

In this user manual we have tried to describe the matters concerning the operation of this CNC system to the greatest extent. However, it is impossible to give particular descriptions for all unnecessary or unallowable operations due to length limitation and products application conditions; Therefore, the items not presented herein should be regarded as "impossible" or "unallowable".

Copyright is reserved to GSK CNC Equipment Co., Ltd. It is illegal for any organization or individual to publish or reprint this manual. GSK CNC Equipment Co., Ltd. reserves the right to ascertain their legal liability.

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Preface

Your Excellency,

We are honored by your purchase of this GSK988TA/988TA1/988TB Turning CNC System made by GSK CNC Equipment Co., Ltd.

This book describes GSK988TA/988TA1/988TB Turning Center CNC System, Programming and Operation (software version: V1.12), and concretely introduces the programming and operations.

To ensure safe and effective running, please read this manual

carefully before installation and operation.

Warning

Accident may occur by improper connection and operation !

This system can only be operated by authorized and qualified personnel.

Special caution:

The power supply fixed on/in the cabinet is exclusively used for the CNC system made by GSK.

It can't be applied to other purposes, or else it may cause serious danger!

Notes

Cautions

Delivery and storage

- Packing box over 6 layers in pile is unallowed.
- Never climb the packing box, stand on it or place heavy objects on it.
- Do not move or drag the products by the cables connected to it.
- Forbid collision or scratch to the panel and display screen.
- Avoid dampness, insolation and drenching.

Open-package inspection

- Confirm that the products are the required ones.
- Check whether the products are damaged in transit.
- Confirm that the parts in packing box are in accordance with the packing list.
- Contact us in time if any inconsistence, shortage or damage is found.

Connection

- Only qualified personnel can connect the system or check the connection.
- The system must be earthed, and the earth resistance must be less than 0.1Ω.
 The earth wire cannot be replaced by zero wire.
- The connection must be correct and firm to avoid any fault or unexpected consequence.
- Connect with surge diode in the specified direction to avoid damage to the system.
- Switch off power supply before plugging out or opening electric cabinet.

Troubleshooting

- Switch off power supply before troubleshooting or changing components.
- Check the fault when short circuit or overload occurs. Restart can only be done after troubleshooting.
- Frequent switching on/off of the power is forbidden, and the interval time should be at least 1 min.

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Announcement

 This manual describes various possibilities as much as possible. However, operations allowable or unallowable cannot be explained one by one due to so many possibilities that may involve with, so the contents that are not specially stated in this manual shall be considered as unallowable.

Warning

• Before installing, connecting, programming and operating, please carefully read the product user manual and the manual from the machine tool manufacturer and strictly operate accordance with the regulations in the manual; otherwise, the product or the machine tool may be damaged, the workpiece may get rejected, even the personal injury may occur.

Caution

 Functions, technical indexes (such as precision and speed) described in this user manual are only for this system. Actual function deployment and technical performance of the machine tool are designed by the machine tool manufacturer, so function configuration and technical indexes are subject to the user manual from the machine tool manufacturer.

Refer to the user manual from the machine tool manufacturer for function and meaning of each button on the machine panel.

All specifications and designs herein are subject to change without notice.

Notes

Safety Responsibility

Manufacturer's Responsibility

- ——Be responsible for the danger which should be eliminated and/or controlled on design and configuration of the provided CNC systems and accessories.
- ——Be responsible for the safety of the provided CNC systems and accessories.
- -----Be responsible for the provided message and advice for the users.

User's Responsibility

——Be responsible for being familiar with and mastering the safety operation procedures through training with the safety operation of the CNC system.

——Be responsible for the dangers caused by adding, changing or altering the original CNC systems and the accessories.

——Be responsible for the dangers caused by failing to observe the provisions in the manual for operation, adjustment, maintenance, installation and storage.

This manual is kept by the end user.

Thank you for supporting us in the use of GSK's products!

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual 【Programming & Operation】

Contents

Contents

Programming

Chapte	er 1 Programming Fundamental	3
1.1 Pr	oduct Introduction	3
1.2 CI	NC System of Machine Tools and CNC Machine Tools	6
1.3 Pr	ogramming Fundamentals	7
1.3.1	Coordinates Definition	7
1.3.2	Increment System	8
1.3.3	Max. Travel	9
1.3.4	Reference Point	
1.3.5	Machine Coordinate System	10
1.3.6	Workpice Coordinate System	10
1.3.7	Local Coordinate System	10
1.3.8	Interpolation Function	11
1.4 Co	oordinate Value and Dimension	12
1.4.1	Absolute Programming and Incremental Programming	12
1.4.2	Diameter Programming and Radius Programming	13
1.4.3	Decimal Programming	14
1.4.4	Conversion between the Metric and the Inch	15
1.4.5	Linear Axis and Rotary Axis	15
1.5 St	ructure of an NC Program	15
1.5.1	Program Name	17
1.5.2	Block Format	
1.5.3	Word	
1.5.4	Block Number	27
1.6 Pr	ogram Run	27
1.6.1	Sequence of Program Run	27
1.6.2	Execution Sequence of Word	28
Chapter	2 G Codes	29
2.1 Su	ummary	29

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

2.1.1 G code Classification	29
2.1.2 Omitting Word Input	32
2.1.3 Relevant Definitions	33
2.2 Rapid Traverse (Positioning) G00	33
2.3 Linear Interpolation G01	34
2.4 Circular Interpolation G02, G03	35
2.5 Spiral Interpolation G02, G03	38
2.6 Dwell G04	40
2.7 Cylindrical Interpolation 7.1	41
2.8 Programmable Parameter Input G10	45
2.8.1 Workpiece Coordinate System Offset	45
2.8.2 Setting a Workpiece Coordinate System's Offset Amount	46
2.8.3 Additional Workpiece Coordinate System Setting	47
2.8.4 Automatically Inputting a Tool Life	47
2.8.5 Setting a Tool Offset Value	48
2.9 Polar Coordinate Interpolation G12.1, G13.1	49
2.10 Metric/Inch Switch G20, G21	51
2.11 Stored Travel Check G22, G23	
	52
2.12 Skip Interpolation G31	52
 2.12 Skip Interpolation G31 2.13 Automatic Tool Offset G36, G37 	53 55
 2.12 Skip Interpolation G31 2.13 Automatic Tool Offset G36, G37 2.14 Reference Point Function 	52 53 55 57
 2.12 Skip Interpolation G31 2.13 Automatic Tool Offset G36, G37 2.14 Reference Point Function	53 55 57 57
 2.12 Skip Interpolation G31	53 55 57 58
 2.12 Skip Interpolation G31	53 55 57 57 58 58
 2.12 Skip Interpolation G31	52 53 55 57 58 58 58 58 59
 2.12 Skip Interpolation G31	53 55 57 57 58 58 58 59 50
 2.12 Skip Interpolation G31 2.13 Automatic Tool Offset G36, G37 2.14 Reference Point Function 2.14.1 Reference Point Return G28 2.14.2 2nd, 3rd, 4th Reference Point Return 2.15 Relevant Functions of Coordinate System 2.15.1 Selecting Machine Coordinate System Position G53 2.15.2 Workpiece Coordinate System Setting G50 2.15.3 Workpiece Coordinate System Selection G54~G59 	52 53 55 57 557 558 58 58 59 50 50 51
 2.12 Skip Interpolation G31	52 53 55 57 57 58 58 58 59 60 51 53
2.12 Skip Interpolation G31 9 2.13 Automatic Tool Offset G36, G37 9 2.14 Reference Point Function 9 2.14.1 Reference Point Return G28 9 2.14.2 2nd, 3rd, 4th Reference Point Return 9 2.15 Relevant Functions of Coordinate System 9 2.15.1 Selecting Machine Coordinate System Position G53 9 2.15.2 Workpiece Coordinate System Setting G50 9 2.15.3 Workpiece Coordinate System Selection G54~G59 9 2.15.4 Additional Workpiece Coordinate System G54.1 9 2.15.5 Local Coordinate System Setting G52 9	52 53 55 57 57 58 58 58 59 60 61 53 54
2.12 Skip Interpolation G31	52 53 55 57 57 58 58 58 58 59 50 61 63 54 54 56

Contents

2	2.18 F	ixed Cycle Code	67
	2.18.1	Axial Cutting Cycle G90	67
	2.18.2	Radial Cutting Cycle G94	70
2	2.19 N	lultiple Cvcle Codes	73
	2.19.1	Axial Roughing Cycle G71	73
Ma	nonte	no change is not observed along the 7 axis	1
IVIC	2 10 2	Radial Roughing Cycle G72	۱
	2 19 3	Closed Cutting Cycle G73	
	2 19 4	Finishing Cycle G70	40
	2 19 5	Axial Grooving Multiple Cycle G74	90
	2 19 6	Radial Grooving Multiple Cycle G75	90 94
	2 19 7	Notes for Multi Cycle Machining	98
	2.10.7		
2	2.20 T	hreading Cutting	98
	2.20.1	Thread Cutting with Constant Lead G32	99
	2.20.2	Thread Cutting with Variable Lead G34	102
	2.20.3	Thread Cutting Cycle G92	103
	2.20.4 Multiple Thread Cutting Cycle G76		106
			100
2	2.21 C	constant Surface Speed Control G96, Constant Rotational Speed Control	G97
2	2.21 C	Constant Surface Speed Control G96, Constant Rotational Speed Control	G97 112
2	2.21 C	eedrate per Minute G98/G94, Feedrate per Rev G99/G95	G97 112 114
2	2.21 C 2.22 F 2.23 C	eedrate per Minute G98/G94, Feedrate per Rev G99/G95	G97 112 114 115
2 2 2	2.21 C 2.22 F 2.23 E 2.23.1	eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code	G97 112 114 115 116
2	2.21 C 2.22 F 2.23 E 2.23.1 2.23.2	eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89	G97 112 114 115 116 121
2	2.21 C 2.22 F 2.23 E 2.23.1 2.23.2 2.23.3	constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80	G97 112 114 115 116 121 122
2	2.21 C 2.22 F 2.23 E 2.23.1 2.23.2 2.23.3 2.23.4	Constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80 Notes for Drilling/Boring Cycle	G97 112 114 115 116 121 122 123
2	 2.21 C 2.22 F 2.23 C 2.23.1 2.23.2 2.23.3 2.23.4 2.24 T 	eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code	G97 112 114 115 116 121 122 123 123
2	2.21 C 2.22 F 2.23 C 2.23.1 2.23.2 2.23.3 2.23.4 2.24 T 2.24.1	withing Finitead Cutting Cycle G/G constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80 Notes for Drilling/Boring Cycle apping Cycle Code Tapping Mode	G97 112 114 114 115 121 122 123 123
2	2.21 C 2.22 F 2.23 E 2.23.1 2.23.2 2.23.3 2.23.4 2.24.1 2.24.1 2.24.2	constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95	G97 112 114 114 115 121 122 123 123 123 124
2	2.21 C 2.22 F 2.23 E 2.23.1 2.23.2 2.23.3 2.23.4 2.24.1 2.24.1 2.24.2 2.24.3	initial cutiling cycle G/0 constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80 Notes for Drilling/Boring Cycle apping Cycle Code Tapping Mode End Rigid Tapping Cycle (G84) / Side Rigid Tapping Cycle (G88) End Common Tapping Cycle G84/Side Common Tapping Cycle G88	G97 112 114 114 115 121 123 123 123 123 123 123 123
2	2.21 C 2.22 F 2.23 C 2.23.1 2.23.2 2.23.3 2.23.4 2.24.1 2.24.1 2.24.2 2.24.3 2.24.3 2.24.3	initial cutting Cycle Gro constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80 Notes for Drilling/Boring Cycle apping Cycle Code Tapping Mode End Rigid Tapping Cycle (G84) / Side Rigid Tapping Cycle (G88) End Common Tapping Cycle G84/Side Common Tapping Cycle G88	G97 112 114 114 115 116 121 123 123 123 123 123 123 123 124 130
2222	2.21 C 2.22 F 2.23 C 2.23.1 2.23.2 2.23.3 2.23.4 2.24.1 2.24.1 2.24.2 2.24.3 2.24.3 2.24.3 2.24.3 2.24.5 A 2.25 A	initial cutting cycle G/0 constant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80 Notes for Drilling/Boring Cycle apping Cycle Code Tapping Mode End Rigid Tapping Cycle (G84) / Side Rigid Tapping Cycle (G88) End Common Tapping Cycle G84/Side Common Tapping Cycle G88 utomatic Chamfering Function	G97 112 114 114 115 116 121 123 123 123 123 123 123 124 130
2	2.21 C 2.22 F 2.23 C 2.23.1 2.23.2 2.23.3 2.23.4 2.24.1 2.24.1 2.24.2 2.24.3 2.24.3 2.24.3 2.24.3 2.24.3 2.24.3 2.24.3	initial cutting cycle Gro ionstant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95 rilling/Boring Fixed Cycle Code End drilling cycle G83 /side drilling cycle G87 End Boring CycleG85 / Side Boring Cycle G89 Cancelling Drilling/Boring G80 Notes for Drilling/Boring Cycle apping Cycle Code Tapping Mode End Rigid Tapping Cycle (G84) / Side Rigid Tapping Cycle (G88) End Common Tapping Cycle G84/Side Common Tapping Cycle G88 utomatic Chamfering Function unction of Directly Inputting Graphic Dimension	G97 112 114 114 115 116 121 123 123 123 123 123 124 130 134 136
2222	2.21 C 2.22 F 2.23 C 2.23.1 2.23.2 2.23.3 2.23.4 2.24.1 2.24.1 2.24.2 2.24.3 2.27.5 2.	onstant Surface Speed Control G96, Constant Rotational Speed Control eedrate per Minute G98/G94, Feedrate per Rev G99/G95	G97 112 114 114 115 116 121 123 123 123 123 123 124 130 130 134 136 140

<u>魚г[⊶]州数</u>	【控 GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual 【Programming & Operati	on
2.27.2	2 System Variable	142
2.27.3	B Operation and Jump Code	146
2.27.4	Macro Program Statement and NC Statement	151
2.27.5	5 Macro Program Call	151
2.28	Slant Axis Control	154
2.29	G Code System B	156
2.29.1	Differences of G Codes	156
2.29.2	2 Absolute Code and Incremental Code G90, G91	157
2.29.3	3 Cycle Code Processing	157
2.29.4	Drilling Fixed Cycle's Return Operation G98, G99	157
Chapter	3 MSTF Codes 1	59
3.1 M	(Miscellaneous Function)	159
3.1.1	End of Program M02	159
3.1.2	End of Program Run M30	159
3.1.3	Program Stop M00	159
3.1.4	Optional Stop M01	160
3.1.5	Subprogram Call M98	160
3.1.6	Subprogram Call M198	161
3.1.7	Return from Subprogram M99	162
3.1.8	Standard M Codes for Standard Ladder	163
3.1.9	Notes for M Codes	164
3.2 Sp	bindle Function	164
3.2.1	Spindle Speed Analog Voltage Control	164
3.2.2	Spindle Override	165
3.2.3	Multi-Spindle Control	165
3.3 To	ool Function	168
3.3.1	Tool Offset	168
3.3.2	Tool Life Management	172
3.3.	2.1 Tool Life Management Data	172
3.3.	2.2 Tool Life Time Count	172
3.3.	2.3 Tool Life Count Restarting M Code	173
3.3.	2.4 Tool Life Management Code in Machining Program	173
3.3.	2.5 Automatically Inputting a Tool Life Data	174
3.3.	2.6 Process when the Tool Life End	176

Contents

;	3.3.	2.7 Tool Life's Relevant Signal		
Chapt	ter	4 Tool Nose Radius Compensation	179	
4.1	Ap	plication		
4.1	1.1	Overview		
4.1	1.2	Imaginary Tool Nose Direction		
4.1	1.3	Compensation Value Setting		
4.1	1.4	G40/G41/G42 Command function		
4.1	1.5	Compensation Direction		
4.1	1.6	Notes		
4.1	1.7	Application		
4.2	То	ol Nose Radius Compensation Offset Path		
4.2	2.1	Inner and Outer Side		
4.2	2.2	Tool Traversing when Start-up Tool		
4.2	2.3	Tool Traversing in Offset Mode		
4.2	2.4	Tool Traversing in Offset Canceling Mode		
4.2	2.5	Tool Interference Check		
4.2	2.6	Codes for Canceling Compensation Vector Temporarily		
4.2	2.7	Particulars		
Chapt	ter	1 Overview	211	
1.1	Op	peration Overview	211	
1.2	Se	tting the System	213	
1.3	Di	splay	213	
1.4	Sy	stem Host Machine	214	
1.4	1.1	System Host Machine Panel	214	
1.4	1.2	Button Definition		
1.4	1.3	Key Definition on Machine Operation Panel	218	
Chapt	ter	2 Power on/off and Safety Protection		
2.1	Pc	wer-on	225	
2.2	Pc	wer-off	225	
2.3	0\	ertravel Protection	226	
2.4	Overtravel Protection of Stored Stroke			

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

2.5 Er	nergency Operation	
2.5.1	Reset	
2.5.2	Emergency Stop	228
2.5.3	Feed hold	228
2.5.4	Cutting off the Power Supply	
Chapter	3 Display Page	229
3.1 Pc	osition Display Page Set	
3.1.1	Absolute Coordinate Display	
3.1.2	Relative Coordinate Display	
3.1.3	Machine Coordinate Display	
3.1.4	Comprehensive Coordinate Display	
3.1.5	Relative Coordinate Setting	233
3.1.6	Switch between the Modal and the Comprehensive Message	233
3.1.7	Clearing the Machining Workpiece Number	234
3.2 Pr	ogram Page Set	
3.2.1	Local Content and U Disc Content	234
3.2.2	MDI Program	236
3.2.3	Current/Next Block	236
3.2.4	Program Restart	
3.3 Sy	vstem Page Setting	
3.3.1	Parameter Setting	
3.3.2	Pitch Compensation Page	
3.3.3	System Message Page	
3.3.4	System File Management	
3.3.5	The Ladder Diagram	
3.3.	5.1 The Ladder Diagram Monitor Display	245
3.3.	5.2 PLC Data	248
3.3.	5.3 PLC Status	250
3.3.6	GSK-Link Communication Setting Page	251
3.3.	6.1 Servo Message Page	251
3.3.	6.2 I/O Unit Page	
3.4 Se	etting Page Set	
3.4.1	Tool Offset Setting	
3.4.	1.1 Tool Offset Setting	

Contents

3.4	.1.2 Tool Life	261
3.4.2	CNC Setting Page	263
3.4	.2.1 System Setting Page	263
3.4	.2.2 Coordinate Setting	264
3.4	.2.3 Setting the System Time	265
3.4	.2.4 System IP Setting	
3.4	.2.5 System Debugging Function	
3.4.3	Macro Variable Page	269
3.5 M	essage Display Page Set	270
3.5.1	Alarm Message	270
3.5.2	History Record	271
3.5.3	System Diagnosis	272
3.5.4	I/O Diagnosis	275
3.6 Fi	igure Display Page Set	276
3.6.1	Setting the Graph Parameters	276
3.6.2	The Machined Graph Path Display	
3.6.3	Simultaneous Graph Display	
3.7 H	elp Page Set	278
3.7 He Chapter	elp Page Set	278
3.7 He Chapter 4.1 Ci	elp Page Set 4 Editing and Managing the Program reating a Program	278 281 281
3.7 Ho Chapter 4.1 Co 4.1.1	elp Page Set 4 Editing and Managing the Program reating a Program New a Program	278 281 281 281
 3.7 He Chapter 4.1 Ce 4.1.1 4.1.2 	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program	278 281 281 281
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program	278 281 281281282282282
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as	278 281 281 281 281 282 282 282 282 283
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program	278 281 281 281 281 282 282 282 282 283 283
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program	278 281 281 281 281 282 282 282 283 283 284 284
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program Arranging a Programs	278 281 281 281 281 282 282 282 283 283 284 284 285
 3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2 R 	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program Arranging a Program ewriting a Program	278 281 281 281 281 282 282 282 283 284 284 284 285 285
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2.1	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program Arranging a Program Editing a Program Editing a Program	278 281 281 281 281 282 282 282 283 284 284 284 285 285 285
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2.1 4.2.1 4.2.2	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program Arranging a Program Editing a Program Rewriting a Program Rewriting a Program Rewriting a Program	278 281 281 281 281 282 282 282 283 284 284 285 285 285 285
3.7 H Chapter 4.1 C 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2.1 4.2.1 4.2.2 4.2.3	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program Arranging a Program Editing a Program Rewriting a Program Shortcut Keys.	278 281 281 281 281 282 282 282 283 284 284 285 285 285 285 288
 3.7 He Chapter 4.1 Ce 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2 Re 4.2.1 4.2.2 4.2.3 4.3 Bi 	elp Page Set 4 Editing and Managing the Program reating a Program New a Program Opening a Program Renaming a Program Saving as Deleting a Program Outputting a Program Arranging a Program Editing a Program Rewriting a Program Shortcut Keys Iock Notes	278 281 281 281 281 282 282 283 284 285 285 285 285 285 285 288 288

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

4.5	Pr	ogram Backstage Editing	290
4.6	Pr	ogram Run	
Chapt	ter	5 Manual Operation	291
5.1	Ma	anual Reference Position Return	
5.0			
5.2	IVI	anual Feeding	
5.3	Inc	cremental Feeding	
5.4	MF	PG Feeding	
5.5	MF	PG Retreating	
5.5	5.1	MPG Retreat Operation Method	297
5.5	5.2	Speed Control based on the MPG	297
5.5	5.3	Rules for Each Code's Reverse Movement	298
5.5	5.4	Notes	298
Chapt	ter	6 Auto Operation	299
6 1	۸.	ito Operation	200
0.1	AU 1 1	Select the Program to Pun	
6.1	1.1 1.2		
6.1	1.2	Pupping from the Arbitrary Block	
6.1	1.3		
6.1	1.4	C31 Skip	
0.1	1.0		
0.1	1.0		
6.2	Ма	anual Data Input (MDI) Running	303
6.2	2.1	Editing the Program in MDI mode	303
6.2	2.2	Running from Arbitrary Block	
6.2	2.3	Stopping MDI Operation	304
6.3	D١	NC Running	304
6.4	Au	Itomatic Running Status Control	307
6.4	4.1	Machine Lock and the Miscellaneous Lock	307
(6.4.	1.1 The Machine Lock	307
(6.4.	1.2 M.S.T Lock	308
6.4	1.2	Dry Run	308
6.4	4.3	Single Block Running	309
6.4	1.4	Feedrate Override	309

Contents

6.4.5	Rapid Movement Override	
6.5 Pr	rogram Restart	
6.5.1	Steps of Program Restart	
6.5.2	M.S.T Function Treatment of Program Restart	
6.5.3	Function Limitation	
6.5.4	Cautions	
Chapter	7 Tool Offset & Tool Setting	319
7.1 Se	etting the Tool Offset Value and Wearing Value	
7.1.1	Direct inputting Method	
7.1.2	Measuring Input Mode	
7.1.3	+ Input Mode	
7.1.4	C Input Mode	
7.1.5	Clearing the Tool Offset Value or the Wearing Value	
7.2 To	ool Setting in the Fixed Position	324
7.3 Tr	ial Tool Cutting (The Machine Zero Return Tool Setting)	
71 D	osition Record	277
7. 4 FX		
7.5 Ai	utomatic Tool Compensation	328
Chapter	8 Graph Setting & Display	331
8.1 Se	etting the Graph Parameters	331
8.2 Pa	ath Graph Display and Operation	
8.3 Si	multaneous Graph Display and Operation	
Chapter	9 Usage of USB Flash Disk	335
01 S/	anding the Program	225
3.1 36		
9.2 Da	ata Backup	
9.2.1	System File Backup	
9.2.2	Backup of Servo Parameter	337
9.2	.2.1 Lead-out of Servo Parameter	337
9.2.	.2.2 Leading-in of Servo Parameter	339
Chapter	10 Machine Example	341
10.1 E	Excircle End Face Machining	341

10.2 Combined Machining345
APPENDIX
Appendix 1 Parameters
Appendix 1.1 Parameter for "Setting"355
Appendix 1.2 Parameters of the Interfaces of Input and Output
Appendix 1.3 Parameters of Axis Control/Setting Unit
Appendix 1.4 Parameter of the Coordinate System
Appendix 1.5 Parameter of the Stroke Detection
Appendix 1.6 Parameter of the Feedrate
Appendix 1.7 Parameter of Control of Acceleration and Deceleration
Appendix 1.8 Parameter of Servo and Backlash Compensation
Appendix 1.9 Parameter of Input/Output
Appendix 1.10 Parameter of Display and Editing
Appendix 1.11 Parameter of Programming
Appendix 1.12 Parameter of Screw Pitch Error Compensation
Appendix 1.13 Parameter of the Spindle Control
Appendix 1.14 Parameter of Tool Compensation 408
Appendix 1.15 Parameter of Canned Cycle 414
Appendix 1.15.1 Parameter of Canned Cycle
Appendix 1.15.2 Parameter of Thread Cutting Cycle
Appendix 1.15.3 Parameter of Thread Cutting Cycle
Appendix 1.16 Parameter of Rigid Tapping418
Appendix 1.17 Parameter of Polar coordinate interpolation
Appendix 1.18 Parameter of User Macro Program423
Appendix 1.19 Parameter of the Skip Function 427
Appendix 1.20 MPG Retraction Parameter429
Appendix 1.21 Parameter of Graphic Display430
Appendix 1.22 Parameter of Run Hour and Parts Count Display

Contents

Appendix 1.23	Parameter for Tool Life Span Administration	431
Appendix 1.24	Parameter of MPG Feed	435
Appendix 1.25	Parameters of Program Restart	437
Appendix 1.26	Polygon Machining Parameter	438
Appendix 1.27	Parameter of PLC Axis Control	439
Appendix 1.28	Parameter of the Basic Function	443
Appendix 1.29	Parameter for Slopping Axis Control	445
Appendix 1.30	Parameter of GSKLink Communication Function	446
Appendix 2 Sta	andard PLC Function Configuration	448
Appendix 2.1	Standard Panel on the Machine Tool	
Appendix 2.1.1	GSK988TA1 Standard Panel on Machine Tool	
Appendix 2.1.2	GSK988TA Standard Panel on Machine Tool	
Appendix 2.1.3	GSK988TA-H Standard Panel on Machine Tool	
Appendix 2.1.4	GSK988TB Standard Panel on the Machine Tool	
Appendix 2.2	Definitions of X and Y Addresses of the Ladder Diagram	450
Appendix 2.2.1	High speed I/O interface	
Appendix 2.2.2	Common machine I/O interface	
Appendix 2.2.3	Interface of the Handhold Box	454
Appendix 3 Int	erface Explanation	456
Appendix 3.1	CNC Rear Cover Interface Layout	456
Appendix 3.1.1	High Velocity Input Interface CN61	
Appendix 3.1.2	Encoder Interface CN21 and CN22	
Appendix 3.1.3	Communication Interface CN54	
Appendix 3.1.4	Network Interface CN55	
Appendix 3.1.5	Standard interface	
Appendix 3.2	Rear Cover Interface of Machine Tool Operation Panel	458
Appendix 3.2.1	Dedicated Wave Band Switch Interface	
Appendix 3.2.2	Dedicated Interface of The External Button CN66	
Appendix 3.2.3	MPG Interface CN31 and CN32	
Appendix 3.2.4	Communication Interface CN57	
Appendix 4 Ala	arm Troubleshooting	462

Appendix 4.1 CN	C Common Alarm Remedy462	•
Appendix 5 Instal	ation Layout 498	
Appendix 5.1 Inst	allation Dimension of GSK988TA/988TA1/988TB and its Accessory	
Appendix 5.1.1 GSk	(988TA1 and its Accessory 499	1
Appendix 5.1.1.1	GSK988TA1 Host Figure Installation Dimension 499	I
Appendix 5.1.1.2	Outline Installation Dimension of GSK988TA1 Operation Panel MPU-08E 500)
Appendix 5.1.2 GS	SK988TA1-H & Accessory 501	
Appendix 5.1.2.1	GSK988TA1-H Host Appearance Installation Dimension	
Appendix 5.1.2.2	MPU-10E Appearance Installation Dimension of GSK988TA1-H Operation	
Panel		
Appendix 5.1.3 GS	SK988TA and its Accessory	
Appendix 5.1.3.1	GSK988TA Host Figure Installation Dimension	
Appendix 5.1.3.2	Appearance Installation Dimension of GSK988TA Operation Panel MPU-08 503)
Appendix 5.1.4 GS	SK988TA-H & Accessory	
Appendix 5.1.4.1	GSK988TA-H Host Appearance Installation Dimension	
Appendix 5.1.4.2	MPU-10 Appearance Installation Dimension of GSK988TA-H Operation Panel	
Appendix 5.1.5 GS	SK988TB and its Accessory 505	
Appendix 5.1.5.1	GSK988TB Host Outline Installation Dimension	,
Appendix 5.1.5.2	GSK988TB-H Host Outline Installation Dimension	j
Appendix 5.1.6 I/C	0 Unit Appearance Dimension 507	,
Appendix 5.1.6.1	IOL-01T Appearance Dimension 507	,
Appendix 5.1.6.2	IOL-02T Appearance Dimension	,
Appendix 5.1.6.3	IOL-02F Appearance Dimension 508	
Appendix 6 List	of Normal Operation 510)

PROGRAMMING

<u>惫г°州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chapter 1 Programming Fundamental

1.1 Product Introduction

With 6 feed axes (including Cs axis), 3 spindles, GSK988TA/GSK988TA1/GSK988TB is a new product aiming at the slant CNC machine and turning center, connected with a servo and I/O unit by GSK-Link bus. Its matched servo motor uses a high-resolution absolute encoder to realize 0.1µm-level position precision and meet high-precision turning-milling compound machining.

With a network interface, GSK988TA/GSK988TA1/GSK988TB supports a remote monitor and file transmission, and meets requirements of a networked teaching and workshop management. It is the best choice of a slant CNC turning machining and turning center.

Fig.1-1 GSK988TA/TB appearance

Technical characteristics

- ■6 feed axes (including Cs axis), 3-axis link and 3 spindles to realize the turning, milling compound machining
- ■Code unit 1µm and 0.1µm, up to 100 m/min
- The servo drive and I/O unit use connection control of GSKLink bus
- ■Nested many PLC programs, PLC ladder on-line editing
- ■Part programs edited on the background
- ■Network interface, remote monitoring and file transmission
- ■USB interface, U disc file operation, system allocation and software upgrading

Technical specifications

- ■Controllable axes
 - ♦ Max. controllable axes: 6 (including Cs axis)
 - ♦ Up to link axes: 3
 - ◆PLC controllable axis number: 6 axes in each path

Feed axis function

- ◆Least code unit: 0.001mm and 0.0001mm (optional)
- ◆Least code range: ±99999999× least code unit

- ♦ Rapid traverse speed: max. 100m/min in 0.001mm code unit, max. 60 m/min in 0.0001mm code unit
- ◆Rapid override: F0, 25%, 50%, 100% real-timing tuning
- ◆Cutting feedrate: 0.01 mm/min ~ 60000 mm/min or 0.01 inch/min ~ 4000 inch/min (G98:feed per minute); 0. 01 mm/rev ~ 500 mm/rev or 0. 01 inch/rev ~ 9.99 inch/rev (G99: feed per rev)
- ◆Feedrate override: 0~150% 16-level real-time tuning
- Interpolation mode: linear, circular, thread, polar, cylindrical interpolation, rigid tapping and polygon interpolation.

Thread function

- Thread type: constant pitch straight thread/taper thread/end thread, variable pitch straight thread/taper thread/end thread
- Thread head: 1~99 heads
- Thread cutting: linear, exponential type (optional)
- Initial speed, termination speed and time of acceleration/deceleration set by the parameter

Acceleration/deceleration function

- Cutting feed: linear, exponential (optional)
- Rapid traverse: linear type
- Initial speed, terminate speed, time of acceleration/deceleration set by the parameter

■Spindle function

- 3-channel spindle control supporting multi-spindle spindle control
- Spindle speed: spindle speed specified by S or PLC signal, its range: 0rpm~20000rpm
- ◆ Spindle override: 50%~120% 8-level real-time tuning
- Spindle constant surface control
- Rigid tapping

Tool function

- Tool length compensation (tool offset): 99 groups
- Tool wear compensation: 99 groups of tool wear compensation data
- Tool nose radius compensation (C type)
- Tool life management
- Toolsetting mode: fixed-point toolsetting, trial-cutting toolsetting, reference point return toolsetting
- Offset execution mode: modifying coordinate mode, tool traverse mode

Precision compensation

- ◆Backlash compensation: compensation range (-9999~9999)× check unit
- Memory pitch error compensation: 1024 compensation points, compensation point number of each is set by the parameter, each point compensation range (-700~700) × check unit

PLC function

- 13 basic codes, 30 functional codes
- PLC ladder on-line edit, real-time monitoring
- 2-level PLC program, up to 12000 steps, the 1st level program refresh period 8ms
- Many PLC programs (up to 16 programs), the current running PLC program can be selected

∎I/O unit

- Rapid I/O: 16 input/8 output interface
- Operation panel I/O: 118 input/96 output interface
- Up to 4 GSKLink remote I/O interfaces, each I/O has 48 input interfaces and 32 output interfaces

Human-computer interface

- ◆ Display in Chinese, English and others
- Two-dimensional tool path and solid graph displa
- Servo state monitoring
- ◆ Servo parameter on-line allocation
- ♦ System debugging, servo debugging
- ◆Real-time clock
- ♦ On-line help
- ♦ Counter

Operation management

- ♦ Operation mode: Auto, Manual, Edit, MDI, DNC, MPG, Reference point return
- Multi-level operation Authorization Management
- ♦ Alarm log
- ◆Timed stop

■Program edit

- ◆ Program capacity: 32M, 10000 programs (including subprogram and macro program)
- ◆ Edit mode: full-screen edit, part program edit on the background
- Edit function: searching, modifying and deleting programs/blocks/words, copying/ deleting blocks
- Program format: ISO code(A set of G code, G code system B), word without blank space, relative coordinates, absolute coordinate compound programming
- ◆ Macro code: statement macro code program
- ◆ Program call: macro program call with parameters, 12-level subprogram nesting
- ◆Aided programming: common used cycle codes using graphic aided programming
- ◆ Drawing dimension input: direct input contour angle, intersection point not to be counted
- Grammar check: executing the rapid grammar check for the program(do not run the program) after it has been edit
- Path preview: do not run programs, use the path preview function to ensure the program path is correct

Communication function

- ♦USB: U disc file operation, U disc file directly machining, upgrading PLC program and system software U disc
- ♦LAN: remote monitoring, network DNC machining, file transmission, remotely upgrading PLC program, system software

■Safety function

- Emergency stop
- Hardware travel limit
- Many stored travel checks
- Data backup and recover

爲┌╴州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

1.2 CNC System of Machine Tools and CNC Machine Tools

CNC machine tool is an electro-mechanical integrated product, composed of Numerical Control Systems of Machine Tools, machines, electric control components, hydraulic components, pneumatic components, lubricating, cooling and other subsystems (components), and CNC systems of machine tools are control cores of CNC machine tools. CNC systems of machine tools are made up of computerized numerical control(CNC), servo (stepper) motor drive devices, servo (or stepper) motor etc.

Operational principles of CNC machine tools: according to requirements of machining technology, edit user programs and input them to CNC, then CNC outputs motion control codes to the servo (stepper) motor drive devices, and last the servo (or stepper) motor completes the cutting feed of machine tool by mechanical driving device; logic control codes in user programs to control spindle start/stop, tool selections, cooling ON/OFF, lubricant ON/OFF are output to electric control systems of machine tools from CNC, and then the electric control systems control output components including buttons, switches, indicators, relays, contactors and so on. Presently, the electric control systems are employed with Programmable Logic Controller (PLC) with characteristics of compact, convenience and high reliance. Thereof, the motion control systems and logic control systems are the main of CNC machine tools.

The system has simultaneously motion control and logic control function to control two axes of CNC machine tool to move, and has PLC function. Edit PLC programs (ladder diagram) according to requirements of input and output control of machine tool and then download them to GSK988TA/988TA1/988TB Turning Machine CNC system, which realizes the required electric control requirements of machine tool, is convenient to electric design of machine tool and reduces cost of CNC machine tool.

Softwares realizing CNC control function is divided into system software (NC for short) and PLC software (PLC for short). NC system is used for controlling display, communication, edit, decoding, interpolation and acceleration/deceleration, and PLC system for controlling explanations, executions, inputs and outputs of ladder diagrams.

Standard PLC programs are loaded when the system is delivered, concerned PLC control functions in following functions and operations are described according to control logics of standard PLC programs, marking with "Standard PLC functions" in GSK988TA/988TA1/988TB Turning CNC System User Manual. Refer to Operation Manual of machine manufacturer about functions and operations of PLC control because the machine manufacturer may modify or edit PLC programs again

Programming is a course of workpiece contours, machining technologies, technology parameters and tool parameters being edit into part programs according to special CNC programming G codes. CNC machining is a course of CNC controlling a machine tool to complete machining of workpiece according requirements of part programs. Technical flow of CNC machining is shown in Fig. 1-2.

Fig. 1-2

1.3 Programming Fundamentals

1.3.1 Coordinates Definition

The following figure is the sketch of CNC turning:

Fig.1-3

7

Programming

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual 【Programming & Operation】

GSK988TA/TB uses a rectangular coordinate system composed of X, Z axis. X axis is perpendicular with axes of spindle and Z axis is parallel with axes of spindle; negative directions of them approach to the workpiece and positive ones are away from it.

Parameter NO.1020 can set and modify program names for each axis and their corresponding relationship is shown below:

Table 1-3 (a)

Axis name	Setting value	Axis name	Setting value
Х	88	Z	90
Y	89	A	65
В	66	С	67
U	85	V	86
W	87		

Note: U, V, W is set only in G code system B.

There is a front tool post and a rear tool post of NC turning machine according to their relative position between the tool post and the spindle, Fig. 1-4 is a coordinate system of the front tool post and Fig. 1-5 is a rear toolpost one. It shows exactly the opposite of X axes, but the same of Z axes from figures. In the manual, it will introduce programming application with the front tool post coordinate system in the following figures and examples.

Fig.1-4 Front tool post coordinate system

1.3.2 Increment System

Increment system includes least input increment (input) and least code increment (output). Least input increment is the least unit of programming movement distance. Least code increment is the least unit of tool movement on the machine tool. Their unit: mm, inch or degree.

Increment systems are separately IS-B and IS-C. No.1004 Bit1 decides to select IS-B or IS-C. No.1004 Bit1 is applied to all axes.

		Least input increment	Least code increment
Metric machine	mm input	0.001mm (diameter)	0.0005mm
		0.001mm (radius)	0.001mm
		0.001deg	0.001deg

	Table 1-3	(b)	increment system IS-B
--	-----------	-----	-----------------------

	inch input	0.0001inch (diameter)	0.0005inch
		0.0001inch (radius)	0.001inch
		0.001deg	0.001deg
	mm input	0.001mm (diameter)	0.00005mm
		0.001mm (radius)	0.0001mm
lach machina		0.001deg	0.001deg
inch machine	inch input	0.0001inch (diameter)	0.00005inch
		0.0001inch (radius)	0.0001inch
		0.001deg	0.001deg

Table 1-3	(C)	increment system IS-C
-----------	-----	-----------------------

		Least input increment	Least code increment
	mm input	0.0001mm (diameter)	0.00005mm
		0.0001mm (radius)	0.0001mm
Matria machina		0.0001deg	0.0001deg
	Inch input	0.00001inch (diameter)	0.00005inch
		0.00001inch (radius)	0.0001inch
		0.0001deg	0.0001deg
	mm input	0.0001mm (diameter)	0.000005mm
		0.0001mm (radius)	0.00001mm
Inch machina		0.0001deg	0.0001deg
menmachine	Inch input	0.00001inch (diameter)	0.000005inch
		0.00001inch (radius)	0.00001inch
		0.0001deg	0.0001deg

Whether the least input increment is mm or inch is determined by the machine based on the parameter INM(1001#0). The least input increment can be switched between the inch and the mm input, which is controlled by G codes(G20 or G21) or the set parameter.

1.3.3 Max. Travel

Max. travel=least code increment X (±) 99999999 Table 1-3 (d) max. travel IS-C

	Increment system	Max. travel
	Metric machine system	±99999.999mm
IS-B		±99999.999deg
10-0	Inch machine system	±9999.9999inch
		±99999.999deg
	Metric machine system	±9999.9999mm
18-0		±9999.9999deg
13-0	Inch machine system	±999.999999inch
		±9999.9999deg

lete 4. The unit is dismotor value in dismotor programming, is redius value in redius programming in the

Note 1: The unit is diameter value in diameter programming, is radius value in radius programming in the above table.

Note 2: The input code cannot exceed max. travel code.

Note 3: The actual travel decides the machine tool.

1.3.4 Reference Point

A reference point is a fixed point on the machine tool. The tool can move to the position by executing the reference point return function. Generally, the reference point is used to tool change and setting coordinate system. GSK988TA/TB Turning CNC System can set 4 reference positions by parameters, which is shown in the following figure:

Fig.1-6 reference point

1.3.5 Machine Coordinate System

The machine tool coordinate system is a benchmark one used for the CNC counting coordinates and a fixed one on the machine tool. A machine tool zero is a fixed point which position is specified by zero switch or zero return switch on the machine tool. After the system is turned on, the reference point return is executed to set machine coordinate system. The machine coordinate system is not keeping until the system is turned off.

Note: For the machine with the incremental encoder, must execute the reference position return every time to set the machine coordinate system after power-off; for the machine with the multi-coil absolute encoder, need not execute the reference position return every time after power-off.

1.3.6 Workpice Coordinate System

The workpiece coordinate system is a rectangular coordinate system based on the part drawing, also called floating coordinate system. The workpiece coordinate system is set by the system in advance, can be changed by moving its coordinate origin point. The established workpiece is valid till it is replaced by a new one. The system has preset 6 workpice coordinate systems (G54-G59).

1.3.7 Local Coordinate System

When the system compiling programs in the workpiece coordinate system, sub-coordinate system of workpiece coordinate system can be set for easily programming, called local coordinate system as follows:

1.3.8 Interpolation Function

Interpolation is defined as a planar or three dimensional contour formed by path of 2 or multiple axes moving at the same time, also called **Contour control**. The controlled moving axis is called link axis when the interpolation is executed. The moving distance, direction and speed of it are controlled synchronously in the course of running to form the required Composite motion path. Positioning control is defined that a motion end point of one axis or multiple axes instead of the motion path in the course of running is controlled.

GSK988TA/TB has linear, arc and thread interpolation functions.

Linear interpolation: Composite motion path of Xp/Yp, and Zp axis is a straight line from start point to end point.

Circular interpolation: Composite motion path of Xp/Yp/Yp/Zp, and Zp/Xp axis is arc radius defined by R or the circle center (I, J, K) from start point to end point.

- Thread interpolation: Moving distance of X or Z axis or X and Z axis is defined by rotation angle of spindle to form spiral cutting path on the workpiece surface to realize the thread cutting. For thread interpolation, the feed axis rotates along with the spindle, the long axis moves one pitch when the spindle rotates one rev, and the short axis and the long axis directly interpolate.
- Note 1:Xp, Yp, Zp are separately X or its parallel axis, Y or its parallel axis, Z or its parallel axis. The followings are the same as those.

Note 2: IP expresses the combination of X_Y_Z (used in programming).

Example:

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

1.4 Coordinate Value and Dimension

1.4.1 Absolute Programming and Incremental Programming

The system has two methods to code the tool traverse: absolute value and incremental value code. In the absolute programming, use the coordinate value programming of the end point; in the incremental programming, use the movement distance programming.

GSK988TA/TB system, the turning machine G codes are divided into two: A set of G code and B set of G code. In A set of G code system, a code's word determines to use the absolute value programming or incremental programming as the following Table 1-4(a); In B set of G code system, G90 and G91 determines to use the absolute value programming or incremental programming, G90 is an absolute code and G91 is an incremental code.

	Absolute value code	Incremental value code
X movement code	Х	U
Y movement code	Y	V
Z movement code	Z	W
C movement code	С	Н

Table	1-4	(a)
i abic	1 7	(u/

A movement code	A	None
B movement code	В	None

In A set of G code system, the system can select the incremental programming or the absolute programming mode, or the incremental/absolute compound programming; the absolute code and the incremental code can be in the same block as follow:

X100.0 W100.0; compound programming

When the absolute code and the incremental code of one axis are in the same block, the following code value is valid.

In B set of G code system, the absolute value code and incremental value code cannot be in the same block. In one block, G90/G91 codes the absolute value code or incremental value code in the block as follows:

G90 X100.0; absolute programming G91 X100.0; incremental programming

An axis word can exist repetitively in the same block and the later value is valid, but when No.3403 Bit 6 (AD2) is set to 1, the alarm occurs. U, W in other G code has bee specified to others. For example: in G73, the above conditions are described in G function codes.

1.4.2 Diameter Programming and Radius Programming

Because the workpiece section is the circle in CNC turning controlled program, X dimension can use two kind of method; diameter programming code and radius programming code.

- 1. The user can select the radius programming or diameter programming, which is set by No. 1006 Bit 3(DIAX)).
- 2. Parameters relevant with diameter/radius programming:

State parameter No.1006 BIT3 (DIAx):

- 0-radius programming;
- 1-diameter programming;

State parameter No.5004 Bit1(ORC):

- 0-offset value is expressed with diameter;
- 1-offset value is expressed with radius;

Pay more attention to the conditions in the following table when X uses diameter programming:

	Word	Explanation	Diameter	Radius
			programming	programming
Addresses	V	X coordinate, polar coordinate	Diameter value	Radius value
and data	X	G50 sets X coordinate	Diameter value	Radius value
the diameter		X increment	Diameter value	Radius value
or radius		G71 infeed amount	Radius	s value
programming	U	X finishing allowance in G71, G72, G73	Defined by a	a parameter
		tool retraction amount in G73	Radius	s value
	R	Clearance in G71, G72	Radius	s value
		Clearance after cutting in G75	Diameter value	Radius value
		Clearance to end point in G74	Diameter value	Radius value

Table 1-4 (b) addresses and data relevant with the diameter or radius programming

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

	Taper in G90, G92, G94, G76, radius in G02, G03, thread finishing amount in G76	Radius value
I	X amount of circle center	Radius value
F	Pitch long axis is X in G32,G34,G92,G76	Radius value
	X feedrate display	Radius/rev, radius /min

Note: Besides the above-mentioned addresses and data related to the diameter programming or the radius programming, other related to word and data related to X numerical value are expressed with radius value.

1.4.3 Decimal Programming

Value can be input by decimal programming. Distance, time and speed can be input by decimal programming. The following addresses can use decimal point: X, Y, Z, A, B, C, U, V, W, H, I, J, K, R and F, and other addresses cannot use decimal programming. An alarm occurs a word has more than one decimal point; an alarm occurs when an address which cannot be specified by a decimal point has a decimal point.

There are two types of decimal point usage which is decided by No. 3401 Bit0(DPI). When NO.3401 Bit0(DPI) is set to 1, a value without a decimal point is with mm, inch. When NO.3401 Bit0(DPI) is set to 0, an input value is specified by least input increment.

	Parameter setting	Least code unit	
ROTx=0	The rotary axis is not	ISC=0	0.001deg
Rotary axis	related to parameter INI	ISC=1	0.0001deg
ROTx=1 Linear axis	INI=0 Metric	ISC=0	0.001mm
		ISC=1	0.0001mm
	INI=1 Inch	ISC=0	0.0001inch
		ISC=1	0.00001inch

Example: when the metric input, the least input increment unit are set to 0.001:

Program code	The corresponding actual	The corresponding actual	
	value when DPI is 1	value when DPI is 0	
X1000 without a decimal	1000mm	1 mm	
code value			
X1000.0 with a decimal	1000mm	1000mm	
code value			

The decimal which is less than the least input increment unit is discarded in course of program being executed.

Example: X2.34567. When the least unit of input increment is 0.001mm, X2.34567 becomes X2.345, when the least unit is 0.0001inch, it becomes X2.3456.

Note: An alarm occurs when the specified is more than 8-digit value.

1.4.4 Conversion between the Metric and the Inch

Metric input or inch input is set by NO.0000 Bit2(INI). G codes corresponding to metric/inch system is as follows:

G20: inch input;

G21: mm input.

Input data unit becomes the inch or metric input unit when NO.0000 Bit2 (INI) setting is changed. But, the angle unit is not changed. It is suggested that the system should be turned on again when INI is modified. The unit of the following value is changed after metric/inch system is switched.

——F feedrate;

—position code;

-----zero offset of workpiece;

-----tool compensation value;

-----graduation unit of MPG;

-----movement distance in incremental feed.

NO.1001 Bit0 (INM) can be used to set machine's metric/inch output instead of metric/inch input.

1.4.5 Linear Axis and Rotary Axis

NO.1006 Bit0 (ROTx) can set each axis to a linear axis or rotary axis. NO. 1006 Bit 1 (ROSx) can be used to select the rotary type for each axis.

Absolute coordinate value is displayed circularly with the movement per rev set by NO.1260 when the cycle function is executed, which can prevent the rotary axis from overflowing. The cycle function is valid when NO.1008 Bit 0(ROAx) is set to 1.

For absolute value code, the coordinate value is the corresponding angle cycle value of per rev set by NO. 1260 after the machine moves. When NO.1008 Bit 1(RABx) is set to 0, the machine rotates according to the shortest distance (to the target point). For incremental code, the machine moves according to the angle defined by the code.

1.5 Structure of an NC Program

User needs to compile part programs (called program) according to command formats of CNC system. CNC system executes programs to control the machine tool movement, the spindle starting/stopping, the cooling and the lubricant ON/OFF to complete the machine of workpiece.

Program example:

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

The tool leaves the path of $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ after the above-mentioned programs are executed.

A program consists of a sequence of blocks, beginning with "OXXXX" (program name) and ending with "M30". A block consist of many words, beginning with block number (can be omitted) and ending with "; ". See the general structure of a program as Fig. 1-10:

1.5.1 Program Name

 $\triangle \triangle \triangle \triangle$ is number of a program name, its range is 4-digit integer 0000 \sim 9999, an alarm occurs when the negative program name is input.

1.5.2 Block Format

1. Format: / $N \triangle \triangle \triangle \triangle$ countless words;

/:

- skip character. A block can have or not it, generally, it is placed in the initial position of a program; user can press "SKIP" on the operation panel to execute the operation when the skip function is valid, otherwise, the "SKIP" key on the operation panel is valid, i.e. the skip character in the block is invalid;
- N△△△△∴: block number. A block can have or not it; number △△△△△ following N is 5-digit non-negative integer 00001~99999, and the system alarms when the input number is decimal.

Countless words: one block can input countless words, and one block can have one or more words or have no words.

- : "EOB" is a end character when one block is completed, ";" is displayed in LCD, there must be have one end character for one block;
- 2. Format requirements
- In one block, there can be no blank space between block number and word, and can be countless blank space(the total characters of one block is within 255);
- (2) In one block, there can be not or be countless space between skip character and block number or words;
- (3) In one block, there can be not or be countless space between end character of block and its front word or blocks;

Each block can be up to 256 characters, including skip character, block number, code, space, end character of block";";

(4) The system automatically ignores the content with small bracket "(",")".

Explanations of program annotation:

Note: The annotation of program home as the total annotation of a program is displayed in the program catalog window, the created program automatically creates the small brackets"(", ")", if they are deleted, the system has no them and they can be replaced by ";".

Sprit(/) explanations:

Slash sign (/) explanations:

- Note 1: When the slash sign (/) is taken as a skip sign, it is placed at the beginning of a block. When it is placed at other places and the skip switch is open, the messages between the slant and EOB code are ignored. Example: U10. G00/04; when the skip switch is open, the system executes U10. G00;(G00 U10.); when the skip switch is closed, it executes U10. G0004;(G04 U10.);
- Note 2: When the cycle code buffer is executed and the block is read to the buffer memory from the memory, the system ensures the skip function is valid. After the block is read into the buffer memory, even if the skip switch state is changed, the block read into the buffer is not influenced;
- Note 3: The slash (/) symbol in <Expression> (closed in the brackets[]) and that at the right of assignment statement "=" are taken as a division operator, which is not taken as a skip symbol.

3. Parameters relevant with a block number:

- (1) Automatically creates a block number:
 - The user can set the system automatically creates a block number by No.0000 bit5(SEQ);
- (2) The user can set a interval value by No.3216 when the system automatically creates bock numbers.

1.5.3 Word

1. Format: address + number. There must not be a space between address and number. Presently, the system permissively input addresses: G, M, S, T, F, X, Y, Z, U, V, W, P, Q, I, J, K, R, L, A, B, C, H, N, O, and will add other.

Code number range following address is referred to the following table.

∆ddress	Function	mm input	Inch input	Related G
Aug 633				codes
0	Program name	0~9999	0~9999	
Ν	Line label	0~99999	0~99999	
G	Preparatory function	See G command explanation	See G command explanation	
М	Miscellaneous function	0~9999	0~9999	
S	Spindle speed	(G96) 0∼32767 (m/min)	(G96) 0~3276 (feet/min)	
Ũ		(G97) 0~32767 (r/min)	(G97) 0~32767 (r/min)	
Т	Tool offset	0000~9999	0000~9999	
F		(ISB system)	(ISB system)	
	Feedrate per minute	0. 00 1 ∼60000 (mm/min)	0.00001 \sim 2400 (inch/min)	608
	(G98)	(ISC system)	(ISC system)	090
		0. 00 1 ~24000 (mm/min)	$0.0001{\sim}9600$ (inch/min)	

Table 1-5-1 word and key word table A
Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 1 Programming Fundamental

Address	Function	mm input	Inch input	Related G	
		(ICD system)		codes	
	Feedrate per rev	0.001~500 (mm/r)		G99	
	(699)				
		0.001~500 (mm/r)	0.0001~9.99 (inch/r)	0	
	Pitch	0.01 ${\sim}$ 500 (mm)	0.01 \sim 9.99 (inch)	Codes relevant with the thread	
	V shash ta saadiaata	(ISB system)	(ISB system)	Codes	
Y	X absolute coordinate	-99999.999 \sim 99999.999 (mm)	-9999.9999 \sim 9999.9999 (inch)	relevant with	
^	time (*1)	(ISC system)	(ISC system)	the thread,	
		-9999.9999 \sim 9999.9999 (mm)	-999.999999 \sim 999.99999 (inch)	G04	
		(ISB system)	(ISB system)		
V	Y absolute coordinate	-99999.999 \sim 99999.999 (mm)	-9999.9999 \sim 9999.9999 (inch)	Codes	
Ŷ	value(linear axis) (*1)	(ISC system)	(ISC system)	with the axis	
		-9999.9999 \sim 9999.9999 (mm)	-999.99999 \sim 999.99999 inch	with the axis	
		(ISB system)	(ISB system)	Codes	
-	Z absolute coordinate	-99999.999~99999.999 (mm)	-9999.9999~9999.9999 (inch)	relevant	
Z	value (linear axis) (*1)	(ISC system)	(ISC system)	with the	
		-9999.9999~9999.9999 (mm)	-999.99999~999.99999 (inch)	thread	
		(ISB system)	(ISB system)	Codes	
A	A absolute coordinate value(linear axis) (*1)	-99999.999~99999.999 (mm)	-9999.9999~9999.9999 (inch)	relevant	
		(ISC system)	(ISC system)	with the	
		-9999.9999~9999.9999 (mm)	-999,999992~999,999999 (inch)	thread	
		(ISB system)	(ISB system)	Codos	
	B absolute coordinate value(linear axis) (*1)	-99999 999~99999 999 (mm)	-9999.9999~9999.9999 (inch)	relevant	
В		(ISC system)	(ISC system)	with the	
		-9999 9999~9999 9999 (mm)	-999 99999~999 99999 (inch)	thread	
				Codes	
C	C absolute coordinate	-99999.999~99999.999 (deg)	-99999.999~99999.999 (deg)	relevant	
C	value (rotary axis) (*1)	(ISC system)	(ISC system)	with the	
		-9999.9999 \sim 9999.9999 deg	-9999.9999~9999.9999 (deg)	thread	
	X relative coordinate	(ISB system)	(ISB system)	Codes	
	in G71 G72 G73 X tool	-99999.999 \sim 99999.999 (mm)	-9999.9999~9999.9999 (inch)	relevant	
	retraction distance and	(ISO evictory)		with the	
	specified delay time(*1) in			thread, G71,	
U	G73	-9999.9999~9999.9999 (mm)	-999.999999~999.999999 (Inch)	G04	
	Out double in OZ4/modify	(ISB system)	(ISB system)		
	cut depth in G71(modily	0.001~99999.999 (mm)	0.0001~9999.9999 (inch)	G71	
	(*2)	(ISC system)	(ISC system)	G/1	
	(- /	0.0001~9999.9999 (mm)	0.00001~999.99999 (inch)		
	V relative	(ISB system)	(ISB system)	Codes	
V	T relative coordinate	-99999.999~99999.999 (mm)	-9999.9999~9999.9999 (inch)	relevant	
v	(*1)	(ISC system)	(ISC system)	with the	
	(~1)	-9999.9999 \sim 9999.9999 (mm)	-999.99999 \sim 999.99999 (inch)	thread	

Address	Function	mm input	Inch input	Related G
	Z relative coordinate			codes
	value, Z finishing allowance in G71, G72,	(ISB system) -99999.999∼99999.999 (mm)	(ISB system) -9999.9999∼9999.9999 (inch)	Axis' relevant
	G73, Z tool retraction	(ISC system)	(ISC system)	code, G71,
W	distance (*1) in G73	-9999.9999 \sim 9999.9999 (mm)	-999.99999 \sim 999.99999 (inch)	G72, G73
		(ISB system) (ISB system)		
	Cut denth (*2) in G72	0.001~99999.999 (mm)	0.0001~9999.9999 (inch)	G72
		(ISC system)		012
		0.0001~9999.9999 (mm)	0.00001~999.99999 (inch)	
		(ISB system)	(ISB system)	
	Arc radius	-99999.999~99999.999 (mm)	-9999.9999~9999.9999 (inch)	
	(*1)	(ISC system)	(ISC system)	G02, G03
		-9999.9999~9999.9999 (mm)	-999.999999~999.99999 (inch)	
	Tapor and throad tapor	(ISB system)	(ISB system)	
	(*1) in G90, G92, G94,	-99999.999~99999.999 (mm)	-9999.9999~9999.9999 (inch)	G90, G92
	G76	(ISC system)	(ISC system)	G94, G76
		-9999.9999~9999.9999 (mm)	-999.999999~999.999999 (inch)	
R	Tool retraction (*2) in	(ISB system)	(ISB system)	
	G71,G72	0∼99999.999 (mm)	$0{\sim}9999.9999$ (inch)	G71, G72
		(ISC system)	(ISC system)	
		0~9999.9999 (mm)	0~999.99999 (inch)	0.70
	Roughing times in G73 $1 \sim 999$ (times) $1 \sim$		1~999 (times)	G73
	Thread increment in	0.01~499.99 (mm)	0.01~9.99(inch)	G34
		-0.01~-499.99 (mm)	-0.01~-9.99(inch)	
	Tool retract amount (*2)			
	after cutting in G74, G75	0~99999.999 (mm)	0~9999.9999 (inch)	G74, G75
	and tool retraction after			
		0~9999.9999 (mm)	0~999.99999 (Inch)	
	Finishing amount (*2) in	0.001~99999.999 (mm)	0.0001~9999.9999 (Inch)	G76
	676	(ISC system)	(ISC system)	
		0.0001~9999.9999 (mm)	0.00001~999.99999 (Inch)	004
Р	Dwell time	0~99999999ms	0~99999999 ms	G04
	G30 returning to No.n	2, 3, 4	2, 3, 4	G30 (default
				to 2)
	Codes for macro program	4		G65, G66
	number, subprogram and	1~9999	1~9999	M98 (times
	subprogram call times			to 1)
	Lipo number engigement			G70 G71
	in G70, G71, G72, G73	0~99999	0~99999	G72, G73
	X cycle movement (*3) in			0.2, 0.0
	G74, G75	1 \sim 999999999 $^{ imes}$ least code unit	1 \sim 999999999 $^{ imes}$ least code unit	G74, G75

Chapter 1 Programming Fundamental

Address	Function	mm input Inch input		Related G
				codes
	Thread cutting parameter in G76	Including 3 parameters: Thread finishing times: $1 \sim 99$ Thread run-out length: $00 \sim 99$ (*0.1 pitch) Angle between two teeth : $0^{\circ} \sim 99^{\circ}$	Thread finishing times: $1 \sim 99$ Thread run-out length: $00 \sim 99$ (*0.1 pitch) Angle between two teeth : $0^{\circ} \sim 99^{\circ}$	G76
	Thread tooth height (*3) in G76	1∼999999999× least code increment	1∼99999999× least code increment	G76
	Spindle selection in multi-spindle	0~3	0~3	Spindle speed S code
	Line number assignment in G70, G71, G72, G73	0~99999	0~99999	G70, G71 G72, G73
	Tool infeed amount(*3) in Z brokenly infeed in G74,G75	1∼99999999× least code increment	1∼999999999× least code increment	G74, G75
Q	Min. cutting amount (*3) in G76 thread roughing	0∼99999999× least code increment	0∼99999999× least code increment	G76
	1 st thread cutting depth (*3) in G76 thread roughing	ad cutting depth in G76 thread 1~999999999× least code increment 1~999999999× least code increment		G76
	Initial angle (*3) of 1 st circle in thread cutting	0∼999999999× least code increment (default to 0)	0~99999999× least code increment (default to 0)	G32, G34 G92
	Macro program call times assignment	1~9999 (default to 1)	1~9999 (default to 1)	G65, G66
L	Head quantity of multi-thread	1~99 (default to 1) 1~99 (default to 1)		G92
I	X vector of arc center relative to start point (*1)	(ISB system) -99999.999~99999.999(mm) (ISC system)	(ISB system) -9999.9999~9999.9999(inch) (ISC system)	G02, G03
	Y vector of arc center	(ISB system) -99999.999~99999.999 (mm)	(ISB system) -9999.9999~9999.9999 (inch)	602 603
J	(*1)	(ISC system) -9999.9999∼9999.9999 (mm)	(ISC system) -999.999999∼999.999999 (inch)	002, 000
	Movement in short axis when thread run-out (*1)	(ISB system) -99999.999∼99999.999 (mm) (ISC system) -9999.9999∼9999.9999 (mm)	(ISB system) -9999.9999∼9999.9999 (inch) (ISC system) -999.99999∼999.99999 (inch)	G32, G34 G92
	Z Vector of arc center relative to start point	(ISB system) -99999.999∼99999.999 (mm)	(ISB system) -9999.9999~9999.9999 (inch)	G02, G03
	(*1)	(ISC system) -9999.9999~9999.9999 (mm)	(ISC system) -999.99999~999.99999 (inch)	
К	Length in long axis when thread run-out is executed	0~99999.999 (mm)	0~9999.9999 (inch)	G32, G34
	(*2)	$0\sim$ 9999.9999 (mm)	0∼999.99999 (inch)	G92

Sign	Abbrev	Function description	Remark
IF		Conditional judgement	
THEN	TH	Execution after IF conditional judgment is completed successfully	
GOTO	GO	Non-conditional skip	
WHILE	WH	Cycle judgment	
DO		Start to execute cycle	
END	EN	Return to WHILE	
EQ	==	Equal to	
NE	<>	Not equal to	
GT	>	Greater than	Jugement logic, only used
GE	>=	Greater than or equal to	to brackets after IF,WHILE
LT	<	Less than	
LE	<=	Less than or equal to	
SIN	SI	Sine	
ASIN	AS	Anti-sine	
COS	CO	Cosine	
ACOS	AC	Anti-cosine	
TAN	TA	Tangent	
ATAN	AT	Anti-tangent	
SQRT	SQ	Square root	
ABS	AB	Absolute value	
ROUN	RO	Rounding-off	Functional function, used to
FIX	FI	Down integer	coumt a expression value
FUP	FU	Up integer	
LN		Nature logarithm	
EXP	EX	Exponential function	
OR		OR	
XOR	XO	OR AND	
AND	AN	AND	
BIN	BI	Converse from BCD to BIN	
BCD	BC	Converse from BIN to BCD	
01234		With to compose the value of word, the leading 0	
56789		can be omitted	
0		Word is 0 and is different with Null value	
+		Number count and number expression	
-			
*			
/		Skip code, selectively skip the codes following the	
		character	
=		Variable assignment	
[Prior operation of expression and conditional	
]		Judgement prompt	
#		Variable	
;		End of program in the block, following annotation	

Table 1-5-1word and key word table B

Chapter 1 Programming Fundamental

Sign	Abbrev	Function description	Remark
(Annotation start in the block. Example: (X20.)W-10.; not execute X20.	
)		Annotation end in the block	
%		End of program	

Note 1: The 2-digit following the decimal point of F value is value, and the more following the two-digit is ignored.

- Note 2: The expression can follow the word, the value counted by the expression is taken as the value of the word, and the expression should have[], and there must not be the space between the word and the expression. For example X[#1-#110] Z[#1+SIN[#120]].
- I. When the address values in the above table, X, Y, Z, C, A, B, C, U, V, W, H, I, J, K, R are taken as word address, their value ranges are controlled by the following 4 parameters:
 - (1) No.0000#2 INI
 - INI input unit
 - 0: metric
 - 1: inch
 - (2) No.1006#0 ROTx
 - ROTx set linear axis or rotary axis
 - 0: linear axis
 - 1: rotary axis
 - (3) No.0004#1 ISC

ISC setting least input increment and least code increment

ISC	Least input increment	Abbrev
0	0.001mm, 0.001deg or 0.0001inch	IS-B
1	0.0001mm, 0.0001deg or 0.00001inch	IS-C

Table 1-5-2	least code increment and value range
-------------	--------------------------------------

Address	Parameter setting			Least	code	Range
				increment		
X, Y, Z, C, A,	ROTx=0	The Rotary	ISC=0	0.001d	leg	-99999.999~99999.999 (deg)
B, C, U, V,	Rotary	axis is not	ISB			
W. H	axis	related to				
,	ci, iii	INI	ISC=1	0.00010	deg	-9999.9999~9999.9999 (deg)
		IINI	ISC			
X, Y, Z, C, A,	ROTx=1	INI=0	ISC=0	0.001n	nm	-99999.999~99999.999 (mm)
B, C, U, V,	Linear	Metric	ISB			
W, H, I, J, K,	axis	system	ISC=1	0.0001	mm	-9999.9999~9999.9999 (mm)
R			ISC			
		INI=1	ISC=0	0.0001i	nch	-9999.9999~9999.9999 (inch)
		Inch	ISB			
		system	ISC=1	0.00001	inch	-999.99999~999.99999 (inch)
			ISC			

When these word addresses follow data (with positive/negative sign), data precision is least code increment, and excessive data is ignored. When a word address follows variable number or has [] expression, the word value has decimal data, and its precision is the least code increment, but its excessive data rounds.

(4) No.3401#0 DPI

- DPI can use decimal address. When the decimal is omitted, its setting is as follows: 0: least setting unit
 - 1: unit: mm, inch, s

When parameter DPI is set to 1, word range is referred to Table 1-5-2;

When DPI is set to 0, and word omits its decimal, its value range is -999999999 \sim 999999999, data unit is the least code increment in Table 1-5-2.

- II. Code value calculation method specified by U, W, R, K is the same that of *1), they meet the value range described in *1) and limit value range according to preparatory function.
- III. Position specified value coded by P, Q is $0\sim$ 99999999, data unit is the least code increment in Table 1-5-2. value range is limit by specific preparatory function.

2. Word value and state will change when the system runs, the following table 1-5-3 separately explains each word omittance and state in the next block when the system is ON, resets.

Address	Function	Initial value	Default	Keep in the next	Value after	Relevant
-uuless		when power-on	value	block?	pressing reset key	explanation
	Program name	Value reserved	Current	Yes	Yes	None
0		by last	value			
		power-on				
	Preparatory function	Initial mode in	Modal	No	(CLR)	
G		each group	value		NO 2400#0	None
		Null	Null	No. (function	NO.3402#6	Specified by
	Miscellaneous	INUII	INUII		INUII	PLC set by
NA	function M00, M01,			reserveu		parameter
IVI	M02, M30, M98,					
	M99					
	Analog spindle		Current	Yes	Current value,	
S		0	value		output is invalid	
	speed		0	Nee	0	
		The tool number	Current	Yes	Current value	
		is the value	Value			
		reserved by				
Т	Tool offset	last power-on				
		and the tool				
		offset value is				
		0				
	Feedrate	Parameter	Current	Yes		
		value	value		OLIN)	
IF					NO.3402#6	
	Pitch	Null	Current	Yes	Current value	
	0		value			
X	Specify delay time	Null	U	NO	0	

Table 1-5-3 word state

Chapter 1 Programming Fundamental

Addroso	Function	Initial value	Default	Keep in the next	Value after	Relevant
Address	FUNCTION	when power-on	value	block?	pressing reset key	explanation
	X absolute	0	Current	Yes	Current value	
	coordinate value		value		- · · ·	
v	Y absolute	0	Current	Yes	Current value	
1	coordinate value		value	X	<u> </u>	
7	Z absolute	0	Current	Yes	Current value	
			Value	Vee	Current volue	
С	coordinate value	0	value	res	Current value	
		Null		No	Null	
	Specify delay time	- Turi	•		- Non	
	X relative coordinate	0	0	No	Current value	
	value					
U	X allowance in	Null	0	No	Null	
	finishing					
	Cutting depth in G71	Parameter	Paramete	Yes	Parameter value	
		value	r value			
V	Y relative coordinate	0	0	No	Current value	
V	value					
	Z relative coordinate	0	0	No	Current value	
	value					
14/	Z allowance in	Null	0	No	Null	
VV	finishing					
	Cutting depth in G72	Parameter	Parameter	Yes	Parameter value	
		value	value			
		0	0	No	Current value	G00
		-	-	No	Current value	Polar
н	C increment value	0	0			coordinate
		-				interpolation
	Arc radius	0	0	No	Current value	
	Taper G90, G92,	0	0	Yes	Current value	
	G94 and thread					
	taper					
	Tool retraction in	Parameter	Parameter	Yes	Parameter value	
	G71. G72	value	value	100		
		-	_			
_	Roughing times in	Parameter	Parameter	Yes	Parameter value	
R	G73	value	value	Maa	Developmente e veloce	
	Clearance in	Parameter	Parameter	res	Parameter value	
	G74,G75	value	value			
	Clearance to end	0	0	No	Null	
	point in G74 G75	0	0	NO	Null	
	Finishing cutting	Parameter	Parameter	Yes	Parameter value	
	amount in G76	value	value			
п	Dwell time	Null	0	No	Null	
	G30 returning to No	Null	2	No	Null	
	n reference position		-			
			1			

Addrose	Eurotion	Initial value	Default	Keep in the next	Value after	Relevant
Address	FUNCTION	when power-on	value	block?	pressing reset key	explanation
	Macro program	Null	Alarm	No	Null	
	number, subprogram,					
	subprogram call times	Null	Alarm	No	Null	
	G70, G71, G72, G73	INUII	AldIII	NO	NUII	
	X cycle movement in	Null	0	No	Null	
	G74,G75					
	Thread cutting in	Parameter	Parameter	Yes	Parameter value	
	G76	value	value			
	Thread tooth height in G76	0	Alarm	No	Null	
	Line assignment in	Null	Alarm	No	Null	
	G70, G71, G72, G73					
	Z broken tool infeed	Null	0	No	Null	
	amount in G74,					
	Least cutting	Parameter	Parameter	Yes	Parameter value	
Q	amount in G76	value	value	100		
	roughing					
	1 st thread cutting	Null	Alarm	No	Null	
	depth in G76 thread					
	roughing					
	1 st circle start angle	Null	0	No	0	
	in thread cutting					
	Macro program call	1	1	No	Null	
L	times assignment					
	X vector of circle	0	0	No	Current value	
	center corresponding					
	to start point					
I	X calculation	Null	Null	No	Null	
	direction in					
	compensation					
	Y vector of circle	0	0	No	Current value	
	center corresponding					
	to start point					
J	Y calculation	Null	Null	No	Null	
	urection in					
	compensation					
	Z vector of circle	0	0	No	Current value	
к	center corresponding					
	to start point					
	Pitch increment in	Null	0	Yes	Current value	
	variable pitch thread					
	cutting					

Chapter 1 Programming Fundamental

Address	Function		Initial	value	Default	Keep in the next	Value after	Relevant
Address			when po	ower-on	value	block?	pressing reset key	explanation
	Z	calculation	Null		Null	No	Null	
	direction	in						
	cancelling	radius						
	compensa	ation						

1.5.4 Block Number

- 1. Format: N $\triangle \triangle \triangle \triangle$
 - $\triangle \triangle \triangle \triangle$ is 5-digit integer 00001 \sim 999999, and its leading zero can be omitted.
 - (1) Can or not input a block number in one block (must input block number in target block in which program skips), when many block number are input in one block, only the last block number is valid;
 - (2) A block number can be placed any position of block but it is suggested that it should be placed at the initial position in order to search and read;
 - (3) There can be many same block number in one program, but the block number of target block of program skip has only one; otherwise, the program skips to the nearest block to the block;
 - (4) Block numbers can be placed at will.(it is suggested that it should be placed by the rising or falling monotonously;
 - Note: When the block number exceeds the range, and the program runs or the grammatical check is done, the relevant alarm occurs.

1.6 Program Run

1.6.1 Sequence of Program Run

Running the current open program must be in Auto mode. GSK988TA/TB cannot open two or more programs at the same time, and runs only one program any time. When one program is open, the cursor is located at display line of the program name and can be moved in Edit mode. In the run stop state in Auto mode, the program starts to run by the cycle start signal (CYCLE START key) is pressed or external cycle start signal)from a block pointed by current cursor, usually blocks are executed one by one according to their programming sequence, the program stops running till executing M02 or M30. The cursor moves along with program running and is located at the heading of the current block. Sequence and state of program running are changed in the followings:

- ◆ The program stops run after pressing RESET or EMERGENCY STOP button;
- ◆ The program stops running when the CNC system or PLC alarms;
- The program runs and single block stops (the program run stops after the current block runs completely) in Edit, MDI mode, and then a block pointed by the current cursor starts running after the system switches into Auto mode, the CYCLE START key is pressed or external cycle start signal is switched on;
- The program stops run in Manual(Jog), Handwheel (MPG), Single Block, Program Reference position Return, Machine Reference position Return mode and it continuously runs from the current stop position after the system is switched into Auto mode and the CYCLE START key is pressed or the external cycle start signal is switched on;
- ◆ The program pauses after pressing the FEED HOLD key or the external cycle start signal

is switched off, and it continuously runs from current position after pressing the CYCLE START key or the external cycle start signal is switched on;

- When Single Block is ON, the program pauses after every block is executed completely, and then it continuously runs from the next block after the CYCLE START key is pressed or the external cycle start signal is switched on;
- ◆Block with "/" in the front of it is not executed when the block skipping switch is ON;
- ◆ The system skips to the target block to run after executing G65;
- ◆ Please see Section Three G Codes about execution sequence of G70~73;
- ◆ Call corresponding subprograms or macro program to run when executing M98; the system returns to main program to call the next block when executing M99(if M99 specifies a target block number, the system returns to it to run) after the subprograms or macro programs run completely;
- ◆The system returns to the first block to run and the current program is executed repetitively when M99 is executed in a main program.

1.6.2 Execution Sequence of Word

There are many words (G, X, Z, F, R, M, S, T and so on) and most of M, S, T are transmitted to PLC by NC explaining and others are directly executed by NC. M98, M99, S word for specifying spindle speed (r/min, m/min) is directly executed by NC.

The NC firstly executes G and then M codes when G codes and M00, M01, M02 and M30 are in the same block.

The NC firstly executes G and then M codes(without transmitting M signal to PLC) when G codes and M98, M99 are in the same block.

When G codes and M, S, T executed by PLC are in the same block, PLC defines M, S, T and G to be executed simultaneously, or execute M, S, T after G codes. Please see User Manual of machine manufacturer for execution sequence of codes.

Execution sequence of G, M (except for the above M codes), S, T defined by GSK988TA/TB PLC in the same block is determined by PLC, which is divided into two methods:

- a) Movement codes and M miscellaneous code are executed simultaneously.
- b) Execute miscellaneous codes after executing movement codes.

Refer to the machine manufacture's user manual for the concrete execution method.

The second method is executed when there is M9, M99, M13, M33 or M5 for our GSK ladder.

Note: When G28 or G30 and M01 are in the same block, the pause after zero return is done. When there is a single block stop code without M01, the single block stop is executed at the middle point and zero return completion position.

Chapter 2 G Codes

2.1 Summary

G code consists of code address G and its following code value, used for defining the motion mode of tool relative to the workpiece, defining the coordinates and so on. Refer to G codes as Fig. 2-1.

Note 1: The leading zero of the code value can be omitted. Example: G02 is equivalent to G2, G01 to G1.

Note 2: The leading zero following the code value cannot be omitted. Example: G20 and G2 are different G codes in the different group; G12.1 is legal but G12.10 is illegal.

Note 3: The code value can be up to 8-bit digit. Example: G00000002 is correct and valid, equivalent to G02.

Note 4: Except for G12.1/G13.1/G7.1/G50.2/G51.2/G50.4/G50.5/G50.6/G51.4/G51.5/G51.6/G54.1, other G code cannot be with the decimal point, otherwise, the alarm occurs. For example: G20.0, G00.0, G18.are illegal.

2.1.1 G code Classification

G codes are divided into: modal G code and non-modal G code.

After a G code is executed, its defined function or state remains valid till other G code is specified in the same group, this G code is called the modal. After the modal G code is executed, before its defined function or state is changed, the G code is not input again when the following block executes the G word.

After a G code is executed, its defined function or state is valid once, its word must be input again when it is executed, and so the G code is called the non-modal.

Example 1: G01 and G00 are modal.

 $\left. \begin{array}{c} G01 \ X_{,;} \\ Z_{,;} \\ X_{,;} \end{array} \right\} \qquad G01 \text{ is valid in the range} \\ G00 \ Z_{,;} \\ X_{,;} \\ G00 \ is valid in the range \\ G01 \ X_{,;} \end{array}$

Example 2: G04 is non-modal.

O0002;	
G0 X50 Z5;	(Rapid traverse to X50 Z5)
G04 X4;	(Delay 4s)
G04 X5;	(Delay 5s again, G04 is non-modal and must be input again)
M30;	

Table 2-1 G code list

G code system		Group	Eurotion	Classificatio	
А	В	Group		n	
*G00	*G00		Positioning(rapid traverse)		
G01	G01	01	Linear interpolation	Model	
G02	G02		Circular interpolation(CW)		
G03	G03	-	Circular interpolation(CCW)		
G04	G04		Dwell, Exact stop		
G7.1	G7.1	-	Culindrical internalation		
(G107)	(G107)	00	Cylindrical interpolation	Non-modal	
G10	G10		Programmable data input		
G11	G11		Programmable data input cancel		
G12.1	G12.1		Deler coordinate internelation mode		
(G112)	(G112)	04	Polar coordinate interpolation mode	Madal	
*G13.1	*G13.1		Polar coordinate interpolation mode	wodai	
(G113)	(G113)		cancel		
G17	G17		XpYp plane selection		
*G18	*G18	16	ZpXp plane selection	Modal	
G19	G19		YpZp plane selection		
G20	G20	06	Inch input	Madal	
*G21	*G21	- 00	mm input	Modal	
*G22	*G22	00	Stored travel check ON	Madal	
G23	G23	09	Stored travel check OFF	Modal	
G28	G28		Return to reference point		
G30	G30 G30		Return to 2 nd , 3 rd , 4 th reference point		
G31	G31	00	Skip interpolation	Non-modal	
G36	G36		Automatic tool offset (X)		
G37	G37		Automatic tool offset (Z)		
G32	G32	01	Constant pitch thread cutting	Modal	
G34	G34		Variable pitch thread cutting	Modal	
*G40	*G40		Tool radius compensation cancel		
G41	G41	07	Cutter compensation left	Modal	
G42	G42		Cutter compensation right		
G50	G92		Workpiece setting or max. spindle		
		00	speed setting	Non-modal	
G52	G52	00	Local coordinate system setting	Non-modal	
G53	G53		Machine coordinate system setting		
*G54	*G54		Select workpiece coordinate system 1		
G55	G55		Select additional workpiece		
			coordinate system		
G56	G56	14	Select workpiece coordinate system 2	Modal	
G57	G57		Select workpiece coordinate system 3		
G58	G58		Select workpiece coordinate system 4		
G59	G59		Select workpiece coordinate system 5		
G61	G61	15	Select workpiece coordinate system 6	Modal	

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

*G64	*G64		Cutting mode		
G65	G65	00 Non-modal macro program call		Non-modal	
G66	G66	12	Macro program mode call	Modal	
*G67	*G67	12	Cancel macro program mode call	Modal	
G70	G70		Finishing cycle		
G71	G71		Axial roughing cycle		
G72	G72		Radial roughing cycle		
G73	G73	00	Closed cutting cycle	Non-modal	
G74	G74		Axial grooving cycle		
G75	G75		Radial cutting multi-cycle		
G76	G76		Multi thread cutting cycle		
*G80	*G80		Cancel drilling fixed cycle		
G83	G83		End drilling cycle		
G84	G84		End rigid/common tapping cycle		
G85	G85	10	End boring cycle	Modal	
G87	G87		Side drilling cycle		
G88	G88		Side rigid/common tapping cycle		
G89	G89		Side boring cycle		
G90	G77		Axial cutting cycle		
G92	G78	01	Thread cutting cycle	Modal	
G94	G79		Radial cutting cycle		
G96	G96	02	Constant surface speed control	Modal	
*G97	*G97	02	Constant speed control	Moual	
*G98	*G94	05	Feed per minute	Modal	
G99	G95	05	Feed per revolution	Moual	
	*G90	02	Absolute code	Modal	
—	G91	0.5	Incremental code	iviouai	
—	*G98	11	Fixed cycle return to initial plane	Modal	
—	G99		Fixed cycle return to point R plane	wouar	

Note 1: No. 3401 Bit6 sets A system or G code system B.

Note 2: G codes in Group 01, 05, 09 separately set their state in No.3402 Bit0(G01), Bit4 (FPM), Bit7 (G23) when

the system is power-on, the G codes in Group 06 in No.0000 Bit2(INI); when the system is turned on,

the modal G code in other groups are at the state designated by *.

- Note 3: When the system resets, No.3402 Bit6 (CLR) is set to 0, the modal of the G code remains unchanged; when it is set to 1, the modal is changed to the one which is at the power-on, but G22 and G23 in Group 09 and G20 and G21 in Group 06 remain unchanged.
- Note 4: G codes in Group 00 are non-modal.
- Note 5: G codes in Group 00 and ones in Group 01 are specified in the same block, G codes in Group 00 are valid, G codes in Group 01 only change their modal.
- Note 6: Codes in Group 06, 09, 21 and ones in other groups cannot be in the same block, codes in Group 12 and G65 are specified only in a separate block.
- Note 7: When No.3403 Bit6(AD2) is set to 0, many G codes in the different groups can be specified in the same block, and the G code specified at last is valid; when it is set to 11, the alarm occurs.

Note 7: When compiling a G code in one block needs a word, and the compiled cannot use the word, the word

is ignored(for example: G00 X_Z_R_ , R_ is ignored); when the ignored word format is not correct, the alarm occurs (For example: G00 X_Z_R2.3.1) .

Note 9: When compiling No.1020 does not have the axis word including the absolute address or incremental address, an alarm occurs.

2.1.2 Omitting Word Input

To simplify the programming, their code values are reserved after executing words in Table 2-2. If the words are contained in the previous blocks, they cannot be input when the words are used with the same values and definitions in the following blocks.

Code address	Function	Initial value when power-on	
11	Cutting depth in G71	NO.5132 value	
0	Move distance of X tool retraction in G73	NO.5135 value	
\\/	Cutting depth in G72	NO.5132 value	
٧V	Move distance of X tool retraction in G73	NO.5136 value	
	Move distance of tool retraction in G71, G72	NO.5133 value	
	cycle		
	Cycle times of stock removal in turning in	NO.5137 value	
D	G73		
IX IX	Move distance of tool retraction after cutting	NO.5139 value	
	in G74, G75		
	Allowance of finishing in G76	NO.5141 value	
	Taper in G90, G92, G94, G96	0	
	Finishing times of thread cutting in G76;	NO.5142 value	
Р	Tool retraction width of thread cutting in G76	NO.5130 value	
	Angle of tool nose of thread cutting in G76;	NO.5143 value	
Q	Least cutting value in G76	NO.5140 value	
	Metric pitch(G32, G92, G76)	0	
F	Feedrate per minute(G98)	NO.1411 value	
I	Feedrate per rotation (G99)	NO.1411 value multiplying	
		0.001	
S	Spindle speed specified(G97)	0	
3	Spindle surface speed specified(G96)	0	

Table 2-2

- Note 1: For the code addresses with functions (such as F, used for feedrate per minute, feedrate per rev and metric pitch and so on), they can be omitted not to input when executing the same function to definite words after the words are executed. For example, after executing G98 F_ without executing the thread code, the pitch must be input with F word when machining metric thread.
- Note 2: When the words in the above table (except for F, S) are not omitted, the input new code value is written to the corresponding parameter.
- Note 3: When X (U), Y (V), Z (W), A, B or C (H) are used to the end point coordinates of the specified block and their words in the block are not input, the system takes the absolute coordinates of the current X, Y, Z, A, B or C as the coordinates of the end point.

Example 1: (run after the first power-on):

O0003;

G98 F500 G01 X100 Z100;

(G98: feed/minute, 500mm/min)

G92 X50 W-20 F2 ;

(thread cutting, F must be input when it is the pitch)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

G99 G01 U10 F0.0 ⁴	1; (G99: feed/minute, F is input again)
G00 X80 Z50 ;	
M30;	
Example 2:	
O0001;	
G0 X100 Z100;	(rapidly traverse to X100 Z100; the modal G0 is valid)
X20 Z30;	(rapidly traverse to X20 Z30; the modal G0 can be omitted)
G1 X50 Z50 F300;	(linear interpolation to X50 Z50, $$ 300mm/min; $$ the modal G1 is valid)
X100;	(linear interpolation to X100 Z50, 300mm/min; When Z coordinate is
	G01 can be omitted when it is modal.)
G0 X0 Z0;	(rapidly traverse to X0 Z0, the modal G0 is valid)
M30;	

2.1.3 Relevant Definitions

Definitions of word are as follows except for the especial explanations:

Start point: position before the current block runs;

End point: position after the current block ends;

Start point of cutting: initial position of cutting feed;

End point of cutting: end position of cutting feed;

X: X absolute coordinates of end point;

Xp: absolute coordinate of X end point or one which is parallel to X;

U: different value of X absolute coordinate between start point and end point;

Y: Y absolute coordinate of end point;

Yp: absolute coordinate of Y end point or one which is parallel to Y;

V: different value of Y absolute coordinate;

Z: Z absolute coordinates of end point;

Zp: absolute coordinate of Z end point or one which is parallel to Z;

W: different value of absolute coordinates between start point and end point;

C: C absolute coordinate of end point;

H: different value of C absolute coordinate between end point and start point;

A: A absolute coordinate of end point;

B: B absolute coordinate of end point;

F: cutting feedrate.

IP: a combination of axis word is called IP_.

2.2 Rapid Traverse (Positioning) G00

Command function: In the absolute code, the tool rapidly traverses to the position specified by the workpiece coordinate system; in the incremental code, the tool rapidly traverses to the position which offsets the specified value of the current position.

Command format: G00 IP__;

Command explanation: IP: it is the end point coordinate value of the tool traversing for the absolute code; it is the tool traversing distance for the incremental code.

Command path:

Fig. 2-2 positioning example

- Note 1: The rapid traverse speed (G00) is set in No.1420 and is not related to the executed feedrate F value in the block.
- Note 2: Whether the initial mode of Group 01 when power-on is G00 or G01 is determined by No.3402 Bit0 (G01).

2.3 Linear Interpolation G01

Command function: the tool executes the linear traverse.

Command format: G01 IP_ F_; it can be omitted to G1

Command explanation: IP_: it is the end point coordinate value of tool traversing for the absolute code; it is the tool traversing distance for the incremental code.

F_: it is the feedrate of the tool and its ranges is shown below.

Feed mode		Metric (mm) input	Inch (inch) input
G98	ISB system	$1{\sim}$ 60000 mm/min	0.01 \sim 2400 inch/min
	ISC system	$1{\sim}$ 24000 mm/min	0.01 \sim 960 inch/min

	C00	ISB system	0.01~500mm/r	0.01~9.99inch/r
699	ISC system	0.01~500mm/r	0.01 \sim 9.99 inch/r	

Note: G98, G99 are separately feed per minute and feed per rotation. G94, G95 are separately feed per minute and feed per rotation in G code system B.

Command path:

Fig. 2-3 linear interpolation

Program: (diameter programming)

G01 X40.0 Z20.0 F500; ((Absolute coordinate programming) or

G01 U20.0 W-26.0; (Incremental coordinate programming) or G01 X40.0 W-26.0; (Compound programming) or

G01 U20.0 Z20.0; (Compound programming)

Fig. 2-4 Linear interpolation example

Note 1: The tool traverses to the specified position along the linear at the speed specified by F. Before the new value is specified, each program is not needed to specify.

Note 2: The actual cutting feedrate is the product between the feedrate override and F code value.

Note 3: The actual cutting feedrate is limited by max. cutting feedrate MFR of No. 1422.

Note 4: G01 supports the synchronous interpolation of linear axis and rotary axis. The code speed includes the speeds of linear axis and rotary axis.

2.4 Circular Interpolation G02, G03

Command function: The tool traverses along an arc on the specified plane. **Command format:**

$$G17 \begin{cases} G02 \\ G03 \end{cases} Xp _Yp _ \begin{cases} R_ \\ I_J_ \end{cases} F _$$

$$G18 \begin{cases} G02 \\ G03 \end{cases} Xp _Zp _ \begin{cases} R_ \\ I_J_ \end{cases} F _$$

$$G19 \begin{cases} G02 \\ G03 \end{cases} Yp _Zp _ \begin{cases} R_ \\ J_K_ \end{cases} F _$$

Command explanations:

G17	XpYp plane selection
G18	ZpXp plane selection
G19	YpZp plane selection
G02	Circular interpolation (CW)
G03	Circular interpolation (CCW)
Xp_	Movement of X or an axis parallel to it (set by No.1022)
Yp_	Movement of Y or an axis parallel to it (set by No.1022)
Zp_	Movement of Z or an axis parallel to it (set by No.1022)
I_	Distance between start point of Xp axis to center of arc (with sign, its
	range referred to the following table)
	Distance between start point of Yp axis to center of arc (with sign, its
	range referred to the following table)
K_	Distance between start point of Zp axis to center of arc (with sign, its
	range referred to the following table)
R_	Arc radius (with sign, it is the radius value when machining, range referred to
	the following table)
F_	Feedrate along arc (its range is the same that of G01)

Address	Incremental system	Metric input (mm)	Inch input (inch)	
I, J,	ISB system	-99999.999~99999.999	-9999.9999~9999.9999	
K, R	ISC system	-9999.9999~9999.9999	-999.999999~999.99999	

I, J, K have sign symbols according their directions, they are positive when their directions are the same those of Xp, Yp, Zp, otherwise, they are negative.

Fig. 2-5

Command path (arc direction):

Fig. 2-7 G02 circular interpolation

- Note 1: One or all of Xp, Yp, Zp can be omitted. When one of them is omitted, it means the coordinate values of the start point and the end point of the axis is consistent; when all are omitted, it means the two points are in the same position.
- Note 2: When I, J, K is omitted and the code is executed, the tool executes the linear movement according to No. 3403 setting value or alarms to stop move.
- Note 3: When I = 0, J = 0 or K = 0, and the code is executed, the tool linearly traverses to the end point.
- Note 4: When I and J, J and K, I and K, are input with R, only R is valid, I, J, K are invalid.
- Note 5: When the start point and the end point are the same one, I, K are the center value, G02/G03 path is a full circle (360°); When R is the arc radius, it means the circle is 0 degree.
- Note 6: When R is the arc radius, it is more than or less than 180°, and it is more than 180° arc when R is negative; it is less than or equal to 180° when R is positive.
- Note 7: The alarm occurs when the radius difference between the start point and the end point of arc exceeds the set value(except for 0) of No. 3410. When the difference does not exceed the setting value or the set value is 0, the tool firstly executes the arc interpolation along the radius value between the arc and the center, and traverse linearly to the end point; in using R programming, R should be equal to or more than the half between the start point and the end point; when the end point is not in the arc defined by R, the user can set whether the system alarms according to No. 3403 Bit4 (RER). It is suggested that the user should use R programming.

- Note 8: In G02/G03 mode, the system alarms when the other axes exceeding the current plane are executed in G02/G03.
- Note 9: The feedrate along the arc is related to not only F value and the override, but also the machining precision (ISB, ISC) and the machining radius. For example, when the arc radius is smaller, the machining cannot be executed at the set feedrate to get the machining precision.
- Note 10: The actual cutting feedrate is limited to max. cutting feedrate MFR of No.1422

G02/G03 compound programming example:

Program: 00001	
N001 G0 X40 Z5;	(Rapidly traverse)
N002 M03 S200;	(Start the spindle)
N003 G01 X0 Z0 F900;	(Approach the workpiece)
N005 G03 U24 W-24 R15;	(Cut arc R15)
N006 G02 X26 Z-31 R5;	(Cut arc R5)
N007 G01 Z-40;	(Cut Φ26)
N008 X40 Z5;	(Return to start point)
N009 M30;	(End of program)

Fig. 2-8 arc programming example

2.5 Spiral Interpolation G02, G03

Command function: when an circular interpolation is specified and the movement 1 axis or 2 axes of the axis exceeding the specified plane is executed, the spiral interpolation to make the tool spiral movement can be executed.

Command format:

$$G17 \begin{cases} G02 \\ G03 \end{cases} Xp _ Yp _ \begin{cases} R _ \\ I _ J _ \end{cases} \alpha _(\beta _)F _$$

$$G18 \begin{cases} G02 \\ G03 \end{cases} Xp _ Zp _ \begin{cases} R _ \\ I _ J _ \end{cases} \alpha _(\beta _)F _$$

$$G19 \begin{cases} G02 \\ G03 \end{cases} Yp_Zp_{-} \begin{cases} R_{-} \\ J_K_{-} \end{cases} \alpha_{-} (\beta_{-})F_{-}$$

A, β : can specify any one linear axis, up to 2 axes exceeding the circular interpolation axis.

Command explanation: The speed code can be set by HTG (No.1403#5), and it can be specified by arc's tangent speed or the tangent speed containing a linear axis.

HTG=0: F specifies the feedrate along the arc. So, the linear axis speed is:

 $F \times \frac{linear axis length}{arc's arc length}$

HTG=1: F is the resultant speed containing arc and linear feedate, so the arc tangent speed is : arc's are longth

$$F \times \frac{\operatorname{arc\,s\,arc\,length}}{\sqrt{(\operatorname{arc's\,arc\,length})^2 + (\operatorname{linear\,axis\,length})^2}}$$

Linear axis speed:

$$F \times \frac{\text{linear axis length}}{\sqrt{(\text{arc's arc length})^2 + (\text{linear axis length})^2}}$$

Note: the tool nose radius compensation is applied to only arc.

2.6 Dwell G04

Command function: it can delay the next block to execute in the defined time.

Code specification: G04 is non-modal.

The dwell time is defined by the word P__, X__ or U__.

X, U value can specify the decimal.

P value cannot have the decimal, otherwise, the system alarms.

Time of P__, X__ or U__ is shown below.

Address	Р			U	Х
Unit	DWT=1	0.001s			
	DWT=0	ISB	0.001s	S	S
	DVVI-0	ISC	0.0001s		

Note: DWT is the setting value of No. 1015 Bit 7(DWT).

Value range of P__, X__ or U__ is shown below.

Address	Incremental system	Metric input	Inch input
X, U	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.999999~999.99999
Р	ISB, ISC	0~99999999	0~99999999

Note 1: The system exactly stop between blocks when P, X, U are not input or zero is specified..

Note 2: P cannot code a negative value, otherwise, an alarm occurs. Note 3: P time unit is set by No. 1015 Bit 7(DWT).

- Note 4: P, X, U are in the same block, P is valid; X, U are in the same block, the later specified code is valid.
- Note 5: The dwell can be executed after the current delay time is completed in executing the feed hold in G04.
- Note 6: When G04 and subprogram M98 /M99 P_ are in the same block, the number following P is the time value of G04 dwell, and is also the message of M98/M99, i.e. subprogram skip message error.
- Note 7: G04 and the interpolation code in Group 1(such as G00, G01) are in the same block, G04 is valid, G0, G01 only change the modal value of G codes in Group 1.
- Note 8: When No.3403 Bit 6(AD2) is 0, G04 and G codes in Group 00 are in the same block, and the later specified code is valid.

2.7 Cylindrical Interpolation 7.1

Command function: the cylindrical interpolation is defined that the movement amount of rotary axis specified by angle is converted into the movement distance of linear axis along the surface in the CNC inside, which makes the rotary axis and other axis execute the linear interpolation or circular interpolation. After interpolation, the distance is converted into the movement amount of the rotary axis, which is shown below:

Command format:

Activate the cylindrical interpolation code. G07.1 can be written to G107 or

G7.1, but must not be with other code in a line;

.....;

....;

line;

Command explanation: G7.1 is non-modal;

r is the cylindrical radius.

Unit of the rotary axis is not degree, but mm (metric input) or inch(inch input)

- Note 1: The rotary axis in the cylindrical interpolation mode is specified by No. 1022, X, Y, Z or an axis parallel with it is also done. G17~G19 is specified to select the plane for which the rotary axis is the specified linear axis. For example, when the rotary axis is X, G17 must specify XY plane which is determined by the rotary axis and Y axis.
- Note 2: Before the cylindrical interpolation, the plane for cylindrical interpolation must be specified firstly, otherwise, the alarm occurs;

The alarm does when G17~G19 is specified to select the plane when the cylindrical interpolation is being executed;

G17~G19 must be specified alone with the rotary axis in the same block, otherwise, an alarm occurs.

- Note 3: The system must specify a plane again after G7.1 C0 exits the cylindrical interpolation, otherwise, the machining plane is still in the plane selected by the cylindrical interpolation;
- Note 4: For the axis which is not specified by a parameter, its movement value is executed in the cylincrial interpolation mode, it does not execute the cylindrical interpolation;
- Note 5: The specified feedrate in the cylindrical interpolation mode is the speed on the circumference, i.e., the extended cylindrical surface's speed;
- Note 6: One rotary axis and another linear axis can execute the circular interpolation in the cylindrical interpolation mode. But the arc radius can be specified by only R instead of I, J and K. The usage of the radius R is the same that of the circular interpolation;

For example, when the circular interpolation is executed between Z and C axis, No. 1022 is set to

1 (X axis) for C axis; at the moment, the circular interpolation code is:

G18 Z_ C_; G02(G03) Z_ C_ R_;

For C axis, when No. 1022 is set to 2, the arc code is :

G19 C__ Z__; G02(G03) Z__ C__ R__;

Note 7: Any tool radius compensation mode being executed must be cleared before the system enters the

cylindrical interpolation mode. Start and end the tool offset in the cylindrical interpolation mode; an alarm occurs when the cylindrical interpolation is enabled in the used tool radius compensation mode;

Note 8: In cylindrical interpolation mode, the movement amount of rotary axis specified by the angle is converted into the movement distance of linear axis along outside surface, which makes rotary axis and another axis execute the linear interpolation or circular interpolation. After interpolation, the distance is converted into the angle, and the movement amount for the conversion is rounded to least input increment. So, when the diameter of the cylindrical is lesser, the actual movement amount is not equal to the specified movement amount, but the error does not accumulate.

Actual motion amount =
$$\frac{\text{MOTION_REV}}{2 \times 2\pi R} \times \left[\text{command value} \times \frac{2 \times 2\pi R}{\text{MOTION REV}} \right]$$

MOTION_REV: movement amount per rotation of rotary axis (its value is set by No.1260);

- R: Radius of workpiece;
- []: Round to least input increment;
- Note 9: In the cylindrical interpolation mode, an alarm occurs when the positioning operation (rapid movement code G00 and other codes to create rapid traverse, including G28, G53, G73, G74, G76, G80~G89) is specified;
- Note 10: In the cylindrical interpolation mode, an alarm occurs when the workpiece coordinate system (G50, G54~G59) or the local coordinate system is specified;
- Note 11: In the cylindrical interpolation mode, the system resets to clear the cylindrical interpolation mode. It must be specified again when the system enters the cylindrical interpolation mode again;
- Note 12: An offset value cannot be changed in the cylindrical interpolation mode, otherwise, an alarm occurs.

R

Example:

00001(CYLINDRICAL INTERPOLATION); N00001 G0 Z100.0; N00002 M14; (the spindle is switched into z position control mode) N00003 G28 H0; (C axis returns to zero) N00004 G18 C0; N00005 G7.1 C67.299; N00006 G01 G42 Z120.0 F300; N00007 C30.0: ł N00008 G03 Z90.0 C60.0 R30.0; N00009 G01 Z70.0; N00010 G02 Z60.0 C70.0 R10.0: N00011 G01 C150.0; N00012 G02 Z70.0 C190.0 R75.0; N00013 G01 Z110.0 C230.0; N00014 G03 Z120.0 C270.0 R75.0; N00015 G01 C360.0; N00016 G40 Z100.0; N00017 G7.1 C0; N00018 M15; (the spindle is switched into speed control mode) N00019 M30:

The above figure is the side unfolded cylindrical in the program. In the figure, when the movement amount of rotary axis (C axis) specified by the angle is converted into the distance of linear axis of outside surface of the cylindrical, and the rotary axis and another linear axis (Z axis) together execute interpolation, which is taken as the interpolation of Z-X plane coordinate system in G18 plane.

2.8 Programmable Parameter Input G10

2.8.1 Workpiece Coordinate System Offset

Command function: the assumed workpiece during programming deviates from the coordinate system actually set by G50. The expected offset amount set by the workpiece coordinate system makes the set coordinate system offset.

Command format: G10 P0 IP_;

Command explanation: P0: workpiece coordinate system's offset code

IP_: setting value of axis address and workpiece coordinate system's offset amount

An absolute code is the offset amount of the previous workpiece coordinate system; an incremental code is the offset amount of the current workpiece coordinate system.

Relationship between coordinate offset and each coordinate:

Note 1: In a program, even if X, Y, Z, C, U, V, W, H are in the same block, the later specified code is

valid for the same axis' codes.

- Note 2: When the code used to setting the coordinate system is set, the set offset amount is invalid. Example) When G50X100.0Z80.0; is specified, in spite of the workpiece coordinate system's offset amount, only one coordinate system is set, which current tool's reference position is X=100.0, Z=80.0.
- Note 3: After the offset amount is set, when the manual reference point return is executed, an offset amount is valid and the set coordinate system immediately offsets.
- Note 4: A workpiece coordinate system's offset amount is determined by the diameter/radius assignation. Example) it is expected that the reference point should be positioned from the workpiece's origin X=Φ120.0 (diameter value), Z=70.0 to the current reference point X=Φ121.0, Z=69.0, the set offset is shown below: X=1.0, Z=-1.0

2.8.2 Setting a Workpiece Coordinate System's Offset Amount

Command function: the function can replace the direct input on the MDI panel to modify the workpiece origin's offset and the workpiece coordinate system's offset value in the coordinate setting page.

Command format: G10 L2 Pp IP_;

Command explanation:p = 0: specify the external workpiece origin's offset amount;

p = 1~6: specify the workpiece origin 's offset amount relative to the workpiece coordinate system 1~6;

IP_: setting of axis' address and workpiece origin's offset amount.

An absolute code is the offset amount of each axis' workpiece origin. An incremental code is to add its value to the previous set workpiece origin's offset amount of each axis (its result is the offset amount of workpiece origin).

Note: when G10 is executed, the corresponding workpiece coordinate system's offset value is refreshed real-time, and #1220~#1226 setting values corresponded to the workpiece coordinate system are simultaneously modified.

2.8.3 Additional Workpiece Coordinate System Setting

Command function: the function can replace the direct input on the MDI panel to modify the additional workpiece coordinate system's offset value in the coordinate setting page.

Command format: G10 L20 Pn IP_;

Command explanation:Pn :set the specified code of the workpiece origin offset amount's workpiece coordinate system;

n: 1~48;

IP_: setting of axis' address and workpiece origin's offset amount.

When the workpiece orgin offset amount is an absolute value, the specified value is a new offset amount. When it is an incremental value, it adding a value specified in the current set offset amount becomes a new offset amount.

2.8.4 Automatically Inputting a Tool Life

Command function: executing G10/G11 inputs a tool life management data Command format: G10 L3 P_;

Command explanation: L3: tool life management function

- P_: the tool life management mode cannot be mixed with the internal executed P tool life group number in G10.
- P is omitted: delete all groups and log in the tool life group
- P1: refresh the group data
- P2: delete the group data

Delete all groups' data (P is omitted) when log in:

Format	Symbol description		
G10 L3;	G10 L3: Delete all groups' data		
P- L-;	P-: group number		
Т-;	L-: tool life value		
Т-;	T-: tool number and tool offset number		
	G11: the log-in ends		
P- L-;			
Т-;			
Т-;			
G11;			
M02(M30);			

After deleting logged-in all tool life management data, the system logs-in the programmed tool life management data.

Change the tool life management data (P1)

Note: When G10 is executed, the offset value of the corresponding additional workpiece coordinate system is refreshed real-time.

Format	Symbol description
G10 L3 P1;	G10 L3: start to change the group' data
P- L-;	P-: group number
T-;	L-: tool life value
T-;	T-: tool number and tool offset number
	G11: the log-in ends
P- L-;	
Т-;	
Т-;	
G11;	
M02(M30);	

In the non logged-in tool life management data group, set the tool life management data or change the logged-in tool life manage data.

Delete the tool life management data (P2)

Format	Symbol description		
G10 L3 P2;	G10 L3 P2: start to delete the group data		
P- ;	P-: group number		
P- ;	G11: the deletion ends		
P- ;			
P- ;			
G11;			
M02(M30);			

Set the tool life group's count type

• •	51
Format	Symbol description
G10 L3 ;	
(G10 L3 P1);	
P- L- Q-;	
T-;	Q: life count type
Т-;	(1: times, 2: time)
G11;	
M02(M30);	

Note: when Q is omitted, the life count type is based on LTN(No. 6800#2) seting value.

2.8.5 Setting a Tool Offset Value

Command function: the function can replace the direct input on the MDI panel to modify the tool wear and all tool geometry offset in the tool offset setting page.

Command format: G10 P_X_Y_Z_;

Command explanation:

Code	Description		
	The code value is an offset number		
Р	$P = 1 \sim 99$: the tool wear offset value code		
	P = 10001~10099 : the tool geometry offset value code		
Х	X offset value (absolute);		
Y	Y offset value (incremental);		
Z	Z offset value (absolute);		
U	X offset value (absolute);		
V	Y offset value (incremental);		
W	Z offset value (incremental);		
Y Z U V W	Y offset value (incremental); Z offset value (absolute); X offset value (absolute); Y offset value (incremental); Z offset value (incremental);		

In the absolute code, values specified in the address X, Y, Z and R are taken as the offsetvalue corresponded to the offset number specified by P.

In the incremental code, values specified in the address X, Y, Z and R should be added to the current offset value corresponding to the offset number.

Note 1: X, Y, Z, U, V and W are specified in the same block.

Note 2: Using the code in a program can permit the tool to feed point by point. Also, using the code can input an offset value one at a time from continuously specifying the code's program instead of inputting these offset value one at a time from MDI mode.

2.9 Polar Coordinate Interpolation G12.1, G13.1

Command function: the contour is controlled by the programming code in the rectangle coordinate system being switched into one linear motion (tool motion) and one turn motion (workpiece turn motion). The function is used to end face cutting.

Command format: G12.1; enter the polar coordinate interpolation mode, also be written to G112;

; ;	The following commands can be commanded in polar coordinate interpolation mode:
;	G01: linear inerpolation;
;	G02, G03: circular interpolation;
	G04: dewell ;
,	G40, G41, G42: tool nose radius compensation;
;	G65, G66, G67: user macro program command;
;	G98, G99: feed per rev, feed per minute;
;	

G13.1; cancel the polar coordinate interpolation mode, also be written to G113;

Command explanation: G12.1, G13.1, are specified by an single block.

Before executing the polar coordinate interpolation, the system must firstly set a linear axis androtary axis performing the polar coordinate interpolation by NO.5460, NO.5461. The polar coordinate interpolation plane consists of a linear axis and a rotary axis, and the polar coordinate interpolation is performed in the plane, which is shown in Fig. 2-11.

In the polar coordinate interpolation mode, the system codes the linear interpolation or the circular interpolation by absolute programming or incremental programming, and also by the tool nose radius compensation.

In the polar coordinate interpolation mode, F feederate is the speed which is tangent with the polar coordinate interpolation plane (rectangular coordinate system).

Example: a polar coordinate interpolation program based on X axis $\mbox{(linear axis)}$ and C axis (a rotary

axis) (Fig.2-12)

X axis uses the diameter programming and C axis uses the radius programming (programming unit: mm, and the display unit: degree.)

O0001;

N10 T0202; N100 G00 X150. C0 Z0; N110 G12.1; N120 G42 G01 X80. F200; N130 C20.0; N140 G03 X40.0 C40.0 R20.0; N150 G01 X-40.0; N160 G03 X-80.0 C20.0 R20.0; N170 G01 C-20.0; N180 G03 X-40.0 C-40.0 R20.0; N190 G01 X40.0; N200 G03 X80.0 C-20.0 R20.0; N210 G01 C0; N220 G40 X150.0; N230 G13.1; N240 Z100.0;

····;

N500 M30;

- Note 1: When the system is turned on or resets, the polar coordinate interpolation is cancelled (G13.1); G12.1 and G13.1 are modal;
- Note 2: The axis undefined by the parameter does not execute the polar coordinate interpolation in spite of specifying the movement value in the polar coordinate interpolation mode;
- Note 3: The used plane (selected by G17, G18 or G19) before G12.1 is cancelled; after G13.1 cancels the polar coordinate interpolation, the plane recovers; when the system resets, the polar coordinate interpolation is cancelled and the system uses the plane;
- Note 4: In the polar coordinate interpolation mode, the program codes use the rectangular coordinate code in the polar coordinate plane. The linear axis in the plane uses the diameter or radius programming and the turn axis uses the radius programming;

Note 5: The arc interpolation executing the arc radius address is determined by the linear axis of the interpolation plane in the polar coordinate interpolation plane as follows: Use I and J when the linear axis is X or its parallel axis, and the turn axis uses J;

Use J and K when the linear axis is X or its parallel axis, and the turn axis uses J;

Use K and I when the linear axis is Z or its parallel axis, and the turn axis uses I;

Also use R code;

- Note 6: Must set a workpiece coordinate system before using G12.1, the center of the turn axis is the origin of the coordinate system. The coordinate system must not be changed in G12.1 mode.
- Note 7: Cannot start or cancel the polar coordinate interpolation mode; code G12.1 or G13.1 in G40; otherwise, an alarm occurs;
- Note 8: When the tool traverses near to the workpiece center in the polar coordinate interpolation mode, C weight of feedrate changes, which exceeds max. C cutting speed to cause an alarm;
- Note 9: The program code uses the rectangular coordinate code in the polar coordinate plane. The axis address of the turn axis is taken as the one of the 2nd axis (imaginary axis) in the plane.
- Note 10: The current position displays the actual coordinates in the polar coordinate interpolation. However, the remainder distance is displayed according to the coordinates in the polar coordinate interpolation plane (rectangular coordinate plane);
- Note 11: When the system executes G12.1, the tool position of the polar coordinate interpolation starts from the angle 0. So, the spindle must be positioned before the polar coordinate interpolation is executed;
- Note 12: Must not switch the spindle gear in the polar coordinate interpolation. The system must be in the spindle speed control mode when the gear shifting is needed.

2.10 Metric/Inch Switch G20, G21

Command function: G code selects the metric or inch system.

Command format: G20; inch input

G21; metric input

Command explanation: G20/G21 must be specified in a single block before a program begins to set a coordinate system.

After metric/inch switch G code is specified, unit of input data is changed into least inch/metric

input increment of incremental system ISB or ISC. Angle unit does not change.

The units of the following value will change after they switch between the metric and the inch.

- ——F feedrate;
- —position code;
- -----zero offset of workpiece;
- -----tool compensation value;
- ——scale unit of MPG;
- ----movement in incremental feed;
- ----some parameters.

Note 1: The modal G20/G21 in group 06 can be set to initial mode by NO. 0000 BIT2 (INI).

- Note 2: The tool compensation value must input the incremental unit and set it again in metric/inch switch.
 - The tool compensation value can automatically change and cannot be set again when NO.5006 Bit0 is 1.
- Note 4: It modifies NO.0000 Bit2 (INI) when the system executes G20/G21. The displayed mode also changes when NO.0000 Bit 2 (INI) is changed.

Note 5: Display digit number and mode of absolute coordinate and relative coordinate are set by No.0000 Bit2 (INI), and display digit number and mode of machine coordinate are separately determined by No.1001 Bit0 (INM) AND No. 3104 Bit0 (MCN).

2.11 Stored Travel Check G22, G23

-----;

Command function: Create the forbidden area of stored travel limit check 2 and limit the tool traverse range in one area.

Command format:	G22;	stored travel 2	check is	turned of	on
oominana iomiat.	$\mathbf{O}\mathbf{Z}\mathbf{Z},$			turneu	511

G23; stored travel 2 check is turned off

Command explanation:G22: stored travel check is turned on;

G23: stored travel check is turned off;

Positive coordinates of the stored travel area is set by No.1322;

Negative coordinates of the stored travel area is set by No. 1323;

Limit area figure: taking examples of X, Y, Z limit area are as follows. X, Y, Z are positive coordinates, I, J, K are negative.

- Note 1: The modal G22/G23 in group 9 can be set by No. 3402 Bit 7(G23);
- Note 2: G22 stored travel check is limited to the stored travel limit check 2, and the detailed is referred to OPERATION;
- Note 3: The data is set by the distance (least code increment is taken as the unit) to the reference position when the parameter sets the top point of the forbidden area;
- Note 4: Whether the limit range is the inner side or outer side of the area is set by No. 1300 Bit0 (OUT), and it is the inner side when it is set to 0;
- Note 5: The limit is valid after the system executes the reference position return; the system alarms when the reference position is in the limit area in G22 mode;
- Note 6: The tool reversely traverses when the travel alarm occurs, and the alarm is cleared after reset again;
- Note 7: G22/G23 is executed in an alone block, and an alarm occurs when it and other G codes or MST are in the same block;
- Note 8: When the system is switched from G23 to G22 in the forbidden area, an alarm occurs;
- Note 9: When No.1310 Bit 0(OT2x) of the stored travel limit check 2 is set to 1(executing the stored travel limit 2 check), the system executes G22 and then the check; the system does not execute the check when it is G23;

2.12 Skip Interpolation G31

Command function: In the course of executing the code, when the outside skip signal (X0.4) is input, the system stops the code to execute the next block.

The function is used to the dynamic measure (such as milling machine), toolsetting measure and so on of workpiece measure.

Command format: G31 IP_ F_;

Command explanations: non-modal G code (00 group); its address format is same that of G01; Cancel the tool nose radius compensation before using it; feedrate should not be set to too big to get a precise stop position;

The following block execution when skipping:

1. The next block of G31 is the incremental coordinate programming, which is shown in Fig. 2-14.

2. The next block of G31 is the absolute coordinate programming of one axis, which is shown in Fig. 2-15.

The next block of G31 is the absolute coordinate programming of two axes as Fig. 2-16.
 Programming: G31 Z200 F100

G01 X100 Z300

Fig. 2-16

Skip signal explanation:
SKIP signal (SKIP): X0.4

Type: input signal

- Function: X0.4 ends the skip cutting. I.e. in a block containing G31, the skip signal becoming the absolute coordinate position of "1" is to be stored in the macro variable (#5061~#5065, its last bit digit corresponds to the No. n axis of the system), at the same time, the movement in G31 block ends. No. 6200 Bit1 (SK0) sets the invalid input state of the skip signal, and when it is set to 0, the input signal 1 is valid.
- Operation: When the skip signal becomes "1", CNC executes as follows: When the block is executing G31, CNC stores the current absolute coordinates for each axis. CNC stops G31 to execute the next block, the skip signal detects its state instead of its RISING EDGE. So when the skip signal is "1", it meets the skip conditions.
- Note 1: When the skip signal is input, the feedrate override, the dry run, and automatic acceleration/ deceleration are invalid in the course of movement by the skip function, which is to improve the tool positioning precision. Set No. 6200 Bit7(SKF) to 1 to make these function valid.
- Note 2: The skip signal is valid, the CNC immediately stops the feed axis (without acceleration/ deceleration execution), and G31 feedrate should be as low as possible to get the precise stop position.

2.13 Automatic Tool Offset G36, G37

Command function: When the code is executed to make the tool move to the measured position, the CNC system automatically measures the difference between the current actual coordinates and the code coordinates to be the tool offset value. The function is used to the automatic toolsetting.

Command format: G36 X_;

G37 Z__;

Explanations: X absolute coordinate(only used to G36), Z absolute coordinate (only used to G37);

Non-modal G code (00 group);

Cancel the tool nose radius compensation before using it;

Only use the absolute programming;

Specify the tool offset number before using the code;

Measure position arrival signal:

- XAE(X0.6) ————corresponding to G36
- ZAE(X0.7) ————corresponding to G37

Type: input signal

Function: When the position measured by the program code is different from that where the tool actually reaches (i.e. at the time, the measured position arrival signal becomes the state set by No.6240#0), the difference of the coordinates is added to the current tool compensation value to update the compensation value. When G36X_(or G37Z_) is executed, the tool firstly rapidly traverses to the position γ measured by the code, and decelerates and temporarily stop the position before the measured position, and then, reaches to the measured position at the speed set by No.6241 (or No.6242). When the measured position arrival signal corresponding to G code becomes the state set by No. 6240#0, and the tool is in the measured position range ±ε, the system updates the offset

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

compensation value and ends the block. When the measured position arrival signal does not become "1", and after the tool reaches the measured position distance ε , the CNC alarms, ends the block and does not update the offset compensation value. Feedrate

G36, G37 automatic tool offset code use

From the initial position to the measured position specified by Xa (or Za) in G36(or G37), the tool rapidly traverses to A zone and stops at T point (Xa-yx (or Za-yz), and then traverses to B, C and D at the feedrate set by No.6241(or No.6242). The system alarms when the tool traverses in B zone and the measured point arrival signal of the end point is set to. The system alarms when the tool stops at V point. No. 6241, No. 6242, No.6254 and No.6255 are set by the radius value.

Fig.2-18

Example:

G50 X760 Z1100;	must have created a workpiece coordinate system
T0101;	define No. 1 tool and execute its tool compensation
G36 X200;	traverse to X toolsetting point (X toolsetting point coordinate: 200)
G00 X204;	retract a little
G37 Z800;	traverse to Z toolsetting point (Z toolsetting point coordinate: 800)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

2.14 Reference Point Function

2.14.1 Reference Point Return G28

Command function: move from the start point at the rapid traverse speed to the middle position specified by IP_ and then return to the reference point.

Command format: G28 IP____;

Command explanation: G28 is non-modal.

IP_: it is the middle point code (absolute value code /incremental value code). The system can omit one or all code address for each axis. Omitting some axis means the axis does not return to the reference point, omitting all axes means the tool does not move.

Code execution process: (as Fig. 2-19):

- (1) Rapidly position from the current position to the middle point of the code $axis(A \rightarrow B)$;
- (2) Rapidly position from the middle point to the reference position $(B \rightarrow R)$;

Fig.2-19

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

- Note 1: After the system is turned on, it does not execute the manual reference position return; when the system executes G28 reference position return, it judges it alarms or executes like the manual reference position return according to No. 1002 Bit 3(AZR) to use the deceleration block to execute the reference position return. But, when the reference position setting function without the block(No.1002 Bit1 (DLZ)) is set to 1 or NO.1005 Bit 1(DLZx) is set to 1, it is unrelated to AZR setting, an alarm occurs when the system executes G28 before the reference position is created.
- Note 2: Each axis separately moves at the rapid traverse speed from the start point through the middle point to the reference position.
- Note 3: G28 or G30 in the tool radius compensation mode automatically cancels the tool radius compensation, and automatically recovers it in the next movement code.
- Note 4: No. 5003 Bit2 (CCN) selects executing G28 cancel tool compensation mode on the middle point or after the reference point return.
- Note 5: Generally, G28 is specified in an alone line; when the system specifies simultaneously the same parameter address word of G00 or G01, IP_ is specified to G28 parameter, G00 or G01 only change the modal value of the corresponding G groups and does not create a motion.

2.14.2 2nd, 3rd, 4th Reference Point Return

Command function: traverse at the rapidly traverse speed to the middle point specified IP_ and then to the 2nd, 3rd and 4th reference position.

Command format: G30 P2 IP___; return to the 2nd reference position

G30 P3 IP___; return to the 3rd reference position

G30 P4 IP____; return to the 4th reference position

Command explanation: G30 is non-modal;

IP_: it is the middle point code (absolute value code /incremental value code). The system can omit one or all code address for each axis. Omitting some axis means the axis does not return to the reference position, omitting all axes means the tool does not move.

Code execution process (as Fig.2-19):

- (1) Rapidly position from the current position to the middle position of the code $axis(A \rightarrow B)$;
- (2) Rapidly position from the middle point to the reference position $(B \rightarrow R)$;

Note 1: A reference point position is set in NO.1241~NO.1243;

- Note 2: After the system is turned on, it executes the reference position return once before executing G30; do not execute the reference position return firstly before executing G30 after the system with the absolute encoder is turned on;
- Note 3: When P is omitted, the system executes it as P2 and returns to the 2nd reference position;
- Note 4: Each axis rapidly moves at individual speed from the current start point to the middle, and from the middle point to the reference point.

2.15 Relevant Functions of Coordinate System

The tool position is expressed with a coordinate value of the coordinate system. GSK988TA/TB system has three kind of coordinate system:

1. machine coordinate system, 2. workpiece coordinate system, 3. local coordinate system Fig.2-20 describes the relationship of the three coordinate systems:

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

Fig.2-20

REF	Reference position.
MO	Origin of machine coordinate system is a fixed point on the machine, No. 1240 value
	confirms the relative position of the reference position and the machine origin.
M2	The 2 nd reference position, No.1214 set the 2 nd reference position in the machine
	coordinate system.
EXT	The outer origin offset can be set by No. 1220 or in the coordinate setting window.
G50	The offset set by G50 is 0 when the system is turned on.
G54,	The offset of the workpiece coordinate system is set by No. 1221, No. 1226, and is
59	also set in the coordinate window.
W0-54,	Origin of the workpiece coordinate system.
W0-59	
G52	The offset of the local coordinate system is 0 when the system is switched on. All
	workpiece coordinate systems share, i.e. the local coordinate system offset set in one
	workpiece coordinate system can exist in other workpiece coordinate system.
L0	Origin of the local coordinate system.

Note: The system has created the above coordinate system after the reference point return is executed firstly. The coordinate system is created after the system is turned on with the absolute position encoder.

2.15.1 Selecting Machine Coordinate System Position G53

A particular on the machine as the machining reference is called the machine zero which is taken as the origin of the coordinate system is called as the machine coordinate system. After the system is turned on, executing the manual reference position return sets the machine coordinate system which

keeps till the system is turned off.

Command function: when the position of the machine coordinate system is executed, the tool traverses to the position at the rapid traverse speed.

Command format: G53 IP

Command explanation: G53 is non-modal;

IP_: coordinate values of each axis in the machine coordinate system must bespecified by the absolute value.

Execution process: As the following figure: the specified axis rapidly moves from A (10, 20) in the current workpiece coordinate system to point B (-8, -10) in the machine coordinate system.

Fig. 2-21

Note 1: G53 is non-modal, and is valid in other blocks;

- Note 2: G53 specifies the absolute position value in the machine coordinate system. The axis code is ignored when some axis uses the incremental value code; omitting one of axis means the axis does not move. When G53 is specified but other axes' position is not specified, other axes do not move;
- Note 3: When G53 is executed, the system cancels the tool nose radius compensation;
- Note 4: After the system is turned on, the system performs the manual reference position return or G28 automatic reference position return, and automatically creates the origin position of the machine coordinate system according to the value set by No. 1240;
- Note 5: The machine coordinate system must be set before the system codes G53. So, the system must execute the manual reference position return or G28 automatic reference position return after it is turned on; the operation is not operated when the system uses the absolute position encoder;
- Note 6: The system executes G53 and G00, G01 in Group 01 in the same block, G00 or G01 only modifies G modal value in Group 01.

2.15.2 Workpiece Coordinate System Setting G50

A coordinate system used to machining a workpiece is called a workpiece coordinate system. A set workpiece can set again the position of workpiece coordinate system by changing its origin position. G50 is used to setting a workpiece coordinate system in A set of G code system and G92 is used to setting a workpiece coordinate system in B set of G code system.

Command function: absolute coordinates of the current position can be set by setting the

absolute coordinates of current position to create the workpiece coordinate system (called as the floating coordinate system). After the workpiece coordinate system is created, the absolute coordinate programming inputs the coordinate value in the coordinate system till the new workpiece coordinate system in G50 is created.

Command format: G50 IP___;

Command explanation: G50 is non-modal G;

- IP_: when the system uses the absolute code, it specifies the new absolute coordinate position of the current point in the coordinate system; when the system uses the incremental code, after its executes G50, the absolute coordinate value of the current point is equal to the sum between the absolute coordinate value before execution and the coordinate incremental value.
- Note 1: After G50 changes the workpiece coordinate system, other workpiece coordinate systems also perform the same offset;
- Note 2: In G50, the system can omit one or all code addresses for each axis, the current coordinate value is not input when the code value for each axis is not input. When the axis code address is omitted, the coordinate axis which is not input keeps its pervious coordinate value;
- Note 3: When G50 and G codes (G00, G01) in Group are in the same block, the system only modifies the modal value of Group 1, and the coordinate value in the block is specified by G50;
- Note 4: When the system does not set G50 offset value, it can set No. 1202 Bit(G50) to forbid G50;
- Note 5: After G50 sets the coordinate system, the system must be turned off and then on, the coordinate values set by G50 remain unchanged before power off.
- Note 6: In NC program, when LGT is set the coordinate offset mode to execute the tool offset, and the system executes T function does not execute the absolute value code, the coordinate system is set by G50, the absolute coordinate value displayed by G50 is the one that the coordinate value set by G50 adding the tool compensation value which is not executed. The difference between the relative coordinates and the machine coordinates is (-80, 10) when the system executes N4, the difference value is caused because X100Z10 setting G50X20Z20 to create the workpiece coordinate system offset, i.e. the user does not think over the tool offset influence when G50 is set in NC program.

Program	Absolute		Relative		Machine	
	coordinates		coordinates		coordinates	
N1 T0100 G00 X100 Z10	X: 100	Z: 10	X: 100 Z	: 10	X: 100	Z: 10
N2 T0101 (No.01 tool offset	X: 88	Z: -13	X: 100 Z	: 10	X: 100	Z: 10
value X12 Z23)						
N3 G50 X20 Z20	X: 8	Z: -3	X: 20 Z	: 20	X: 100	Z: 10
N4 G00 X10 Z10	X: 10	Z: 10	X: 22 Z	: 33	X: 102	Z: 23

2.15.3 Workpiece Coordinate System Selection G54~G59

Command function: One of G54~G59 is specified, one of workpiece coordinate system 1~6 can be selected. After the workpiece coordinate system is specified, the specified point in the block is in the specified workpiece till a new workpiece coordinate system is created as Fig. 2-21. The tool positions X60.0, Z20.0

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

in the workpiece coordinate system 3.

Command format: G54 workpiece coordinate system 1;

G55 workpiece coordinate system 2;

G56 workpiece coordinate system 3;

G57 workpiece coordinate system 4;

- G58 workpiece coordinate system 5;
- G59 workpiece coordinate system 6;

Command explanation: G54~G59 are modal.

Note 1: A workpiece coordinate system is valid after a reference point is created.

When the system is turned on, No.1201 Bit 5 (EWZ) sets to memery the workpiece coordinate system or not. When EWZ is set to not to memory, the workpiece coordinate system defaults to G54 after power-on.

When reset, No.1201 Bit7 (WZR) sets the system returns to G54 workpiece coordinate system or not. But when No.3402 Bit 6(CLR) is set to 1, the mode in the group also returns to G54.

Note 2: G54-G59 describing the 6 workpiece coordinate systems can change their positions by the external workpiece zero offset value or workpiece zero offset value, and their relationship is as Fig. 2-23;

Fig. 2-23

Note 3: Use the following method to change:

- 1) MDI input changes the workpiece coordinate system zero;
- 2) Use G50 to move the workpiece coordinate system;

Specifying G50 IP_ makes the workpiece coordinate system (G54~G59) to set a new workpiece coordinate system where the current tool position is consistent with the specified coordinates. When G50 specifies the relative value, the value adding the previous tool position coordinate value creates a new coordinate system, but the tool position does not change but the coordinate system executes the offset as Fig. 2-24:

Fig.2-24

Note 4: The coordinate offset value created by G50 adds to the one of all workpiece zero to make ensure that all workpiece coordinate systems offset are the same value as Fig. 2-25:

- X'-Z', New workpiece coordinate system X-Z, Previous workpiece coordinate system A:G50 Offset value B:Zero offset value of workpiece in G54 C:Zero offset value of workpiece in G55 **Fig. 2-25**
- Note 5: The workpiece zero offset value of G54~G59 workpiece coordinate system can be set in the parameters and input in the coordinate setting window;

2.15.4 Additional Workpiece Coordinate System G54.1

Command function: The system uses 6 standard workpiece coordinate systems (G54~G59) and can use 48 additional workpiece coordinate systems.

፩┌╴州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Command format: G54.1 Pn ;

G54 Pn :

Command explanation: Pn: specified the codes for additional workpiece coordinate systems n: 1~48

When P and G54.1 (G54) are specified together, the system selects an additional workpiece coordinate system 1 \sim 48 according to P code. Once the workpiece coordinate system is selected, it is still valid till another workpiece coordinate system is selected. When the system is turned on, the system selects the standard workpiece coordinate system 1(using G54 to select it).

G54.1 P1 —— select additional workpiece coordinate system 1

G54.1 P2 —— select additional workpiece coordinate system 2

G54.1 P48 —— select additional workpiece coordinate system 48

The workpiece origin's offset amount of the additional workpiece coordinate system is the same that the standard workpiece coordinate system, which can execute the following operations:

- ① execute the display and setting by the setting page of workpiece origin offset amount.
- 2 read and write a value by a user macro program's system variable.

③ input a workpiece origin's offset amount by the external data input.

Note 1: P after G54.1 (G54) is specified. When P after G54.1 in the same block is not specified, the system selects an additional workpiece coordinate system 1 (G54.1 P1).

Note 2: An alarm (PS0003) occurs when the specified P value exceeds its range.

Note 3: When G54.1(G54) and another code (such as G04, M98) with P code are in the same block, the two codes are simultaneously valid and P value does not exceed the offset number.

Example 1) G54.1 G04 P1000; an alarm occurs (PS0003). Example 2) G54.1 M98 P48;

is normally executed.

2.15.5 Local Coordinate System Setting G52

To be convenient to programming, the sub-coordinate system to set the workpiece coordinate system is called the local coordinate system.

Command function: executing G52 IP_; in the program can set the local coordinate system in

the workpiece coordinate system G54~G59. The origin of the local coordinate system can set in the position specified by IP_ in the workpiece coordinate system. The corresponding relationship is as Fig. 2-26.

Fig. 2-26 Command format: G52 IP__; set the local coordinate system

G52 IP0; cancel the local coordinate system

Command explanation: G52 is non-modal;

.

IP_: when IP_ is absolute code, the system specifies the absolute coordinate value of origin of local coordinate system in the workpiece coordinate system; when IP_ is the incremental code, the execution result is the same that of the absolute code;

Once the local coordinate system is created, its coordinates are used to the axis motion code. Using G52 to code the zero of the new local coordinate system in the workpiece coordinate system can change the position of the local coordinate system. making the zero of the local coordinate system coincide with the one of the workpiece coordinate system can cancel the local coordinate system and returns to the workpiece coordinate system, i.e. code G52 X0 Z0 or G52 U0 W0.

- Note 1: The local coordinate system setting does not change the workpiece coordinate system and the machine coordinate system;
- Note 2: Executing G52 can temporarily cancel the offset in the tool nose radius compensation;
- Note 3: In local coordinate system, when G50 sets the workpiece coordinate system and the system has not specified the coordinate values to all axes in the local coordinate system, the axis which is not specified in G50 in the local coordinate system still keeps, the local coordinate system corresponding to G50 axis is cancelled; For example: G52 X50 Z50;
 -

G50 X100; at the moment, Z coordinate value is not change, the local coordinate system corresponding to X is cancelled

- Note 4: When the system selects the workpiece coordinate system code (G54~G59) to change the workpiece coordinate system in the local coordinate system, the local coordinate system also moves to the new workpiece coordinate system.
- Note 5: Whether the local coordinate system in reset is cancelled is determined by No.1202 Bit 3(RLC) , the local coordinate system is cancelled in reset when the parameter is set to 1.
- Note 6: Whether the local coordinate system in manual reference position return is cancelled is determined by No.1201Bit 2 (ZCL), the local coordinate system is cancelled in manual reference position return when the parameter is set to 1. When G28 and G30 execute the reference point return, the system does not cancel the local coordinate system.

&┌─州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

2.16 Plane Selection Code G17~G19

Command function: G code selects to execute the circular interpolation and the tool nose radius compensation plane.

Command format: G17 selects XpYp plane;

G18 selects ZpXp plane;

G19 selects YpZp plane;

Command explanation: G17, G18, G19 are modal G codes.

Xp: X or its parallel axis

Yp: Y or its parallel axis

Zp: Z or its parallel axis

- Note 1: Xp, Yp, Zp are determined by the axis addresses of G17, G18, G19 in the block; when the axis addresses are omitted, the system defaults the omitted are the addresses of the basic axis; the plane keeps when the system does not code G17, G18, G19 blocks.
- Note 2: The parameter (No. 1022) sets each axis to have three basic axes (X, Y, Z) or the parallel axis.
- Note 3: The plane remains unchanged in the G17, G18, G19 not be specified.
- Note 4: When the system is turned on, its initialization is defaulted to G18 state, i.e. ZX plane;
- Note 5: When the system repetitively specifies G17~G19 in the same block, and No.3403 Bit 6(AD2) is 0, the last G17~G19 word is valid, the system alarms when the parameter is set to 1;
- Note 6: The multi-compound cycle code (G70~G76) and the fixed cycle code (G90, G92, G94) are used to ZX basic axis plane; when their functions are specified in other planes, an alarm occurs;
- Note 7: The motion code is not related to the plane selection, besides the arc interpolation and tool nose radius compensation code, when the system codes the axis beyond the planes, no alarm exists and the axis can move; when the system selects the axis motion beyond the plane in the arc interpolation code, the system defaults it executes the spiral interpolation.

For example:

G17 X_Y_;	select XY plane
G17 A_Y_ ;	select AY plane
G18 X_Z_;	select ZX plane
G17;	select XY plane
G17 A_	select AY plane
G18 Y_	select ZX plane, Y motion is not relative the plane

2.17 Exact Stop Mode G61/Cutting Mode G64

G61 function: the programmed axis of a block must exactly stop at the end point of the block, and the system continuously executes a next block.

G64 function: the system executes a next block while the programmed axis of each block after G64 starts to decelerate (the axis does not reach the programmed end point). The programmed contour in G64 mode is different from the actual contour, and the different degrees is determined by F value and the angle between two paths, bigger their difference is, F value is bigger.

Command format: G61; (exact stop mode)

G64; (cutting mode, defaulted to default value)

Command explanations:

- 1. A block including G61 exactly stops the end point of the program before the system executes the next block, which is used to process sharp edges and corners. G61 is modal and valid before G64 is executed. The programmed contour is the same that of the actual.
- 2. G64 is modal, valid and default before G61 is executed. G64 path is different from that of G61 as Fig. 2-27;
- 3. G61, G64 belong to Group 15, and their relations with other G groups are referred to Group 5.
- 4. When G0 is executed, it is in the exact stop in cutting mode because it is non cutting code.
- 5. When G61 /G64 is specified, it is value in the next executed block.

Fig. 2-27

2.18 Fixed Cycle Code

To simplify programming, GSK988TA/988TA1/988TB defines G code of single machining cycle with one block to complete the rapid traverse to position, linear/thread cutting and rapid traverse to return to the start point:

G90: axial cutting cycle; G92: thread cutting cycle; G94: radial cutting cycle;

Note: G92 thread cutting fixed cycle code is described in Section Thread Function.

2.18.1 Axial Cutting Cycle G90

Command function: From start point, the cutting cycle of cylindrical surface or taper surface is completed by radial feeding(X) and axial (Z or X and Z) cutting.

Code specifications: G90 is modal;

X_,Z_	Coordinates of longitudinal cutting (C point in the figure below)	
U_,W_	_,W_ Movement to end point (C point in the figure below) of longitudinal cutting	
F_	Cutting feedrate	
R_	Taper (radius value, with direction, range referred to the table below	

Address	Incremental system	metric (mm) input	Inch (inch) input
R	ISB system	-99999.999mm~999999.999mm	-9999.9999 inch \sim 9999.9999inch
	ISC system	-9999.9999mm~9999.9999mm	-999.99999 inch \sim 999.99999inch

Cycle process:

- ① X rapidly traverses from start point A to cutting start point B;
- 2 Execute the linear interpolation from the cutting start point B to cutting end point C;
- ③ X executes the tool retraction at feedrate, and return to the position which the absolute coordinates and the start point D are the same;
- ④ Z rapidly traverses to return to the start point A and the cycle is completed.

Fig. 2-29

Cutting path: Relative position between cutting end point and start point with U, W, R, and tool path of U, W, R with different sign symbols are as Fig. 2-30:

1) U>0, W<0, R>0

2) U<0, W<0, R<0

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

Example: Fig. 2-31, workblank Φ125×110

Fig.2-31

Program:

M03 S300 G0 X130 Z3;

G90 X120 Z-110 F200; (A \rightarrow D, Φ 120 cut)

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

X110 Z-30;	
X100;	
X90;	$(A \rightarrow B, 6 \text{ times cutting cycle } \Phi 60, \text{ increment of } 10 \text{ mm})$
X80;	
X70;	
X60;	
G0 X120 Z-30;	
G90 X120 Z-44 F	7.5 F150;
Z-56 R-15;	(B \rightarrow C, taper cutting, B \rightarrow C, 4 times tool infeed cutting)
Z-68 R-22.5;	\geq
Z-80 R-30;	
M30;	

2.18.2 Radial Cutting Cycle G94

Command function: From start point, the cutting cycle of cylindrical surface or taper surface is completed by radial feeding(X) and axial (Z or X and Z) cutting.

Command format(A set) :	G94 X(U) Z(W) F; (face cutting)
	G94 X(U) Z(W) R F; (taper face cutting)
Command format(B set) :	G79 X Z F; (face cutting)
	G79 X Z R F; (taper face cutting)

Code specifications: G94/G79 is modal;

X_,Z_	Coordinate of cutting end point(C point in the figure below)in the direction of
	the bottom side
U_,W_	Movement to cutting end point (C point in the figure below)in the direction of
	bottom side
F_	Cutting feedrate
R_	Taper (radius value, with direction, range referred to the table below

Incremental	Metric(mm)	Inch (inch) input	Incremental system
system	input		
R	ISB system	-99999.999 mm~99999.999mm	-9999.9999 inch \sim 9999.9999inch
	ISC system	-9999.9999 mm \sim 9999.9999mm	-999.99999 inch \sim 999.99999inch

Cycle process:

- 1 Z rapidly traverses from start point A to cutting start point B;
- 2 Execute linear interpolation from the cutting start point B to cutting end point C;
- ③ Z executes the tool retraction at the cutting feedrate (opposite direction to the above-mentioned ①), and returns to the position which the absolute coordinates and the start point D are the same;

④ The tool rapidly traverses to return to the start point A and the cycle is completed.

Fig. 2-32

Cutting path: Relative position between cutting end point and start point with U, W is as Fig.2-34:

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Fig.2-35

Program:

G00 X130 Z5 M3 S500; G94 X0 Z0 F200; X120 Z-110 F300; G00 X120 Z0; G94 X108 Z-30 R-10; X96 R-20; X84 R-30; X72 R-40; X60 R-50; M30; $C \rightarrow B \rightarrow A, \phi 60 cut$

- Note 1: The fixed cycle code is used to only ZX plane. An alarm occurs when other axis' motion in the fixed cycle code's blocks is executed;
- Note 2: After X(U) , Z(W) , R are executed in the canned cycle code, their code values are value if X(U) , Z(W) ,R are not redefined by executing a new canned cycle codes. The code values of X(U) , Z(W) , R are cleared if non-modal G code (Group 00) or other G codes in Group 01 except for G04 is executed;
- Note 3: In MDI mode, a fixed cycle which is the same with the previous canned cycle can be executed without inputting the code again after the run is completed;
- Note 4: The previous cycle operation of the fixed cycle is executed repetitively when the next block immediately follows EOB (;) or there is a null line in G90~G94, but when the following block immediately follows M, S, T code, the system does not repetitively execute the previous cycle operation.

Example: ...

N010 G90 X20.0 Z10.0 F400;

```
N011 ; (here, execute G90 one time again)
```

...

Note 5: The single block is executed in G90, G94, the single block stops after the whole cycle of the current block is completed.

2.19 Multiple Cycle Codes

GSK988TA/TB multiple cycle codes include axial roughing cycle G71, radial roughing cycle G72, closed cutting cycle G73, finishing cycle G70, axial grooving multiple cycle G74, axial grooving multiple cycle G75 and multiple thread cutting cycle G76. When the system executes these codes, it automatically counts the cutting times and the cutting path according to the programmed path, travels of tool infeed and tool retraction, executes multiple machining cycle(tool infeed \rightarrow cutting \rightarrow retract tool \rightarrow tool infeed), automatically completes the roughing, finishing workpiece and the start point and the end point of code are the same one.

Note: G76 multiple thread cutting cycle code is described in *Thread Function*.

2.19.1 Axial Roughing Cycle G71

G71 roughing cycle type is divided into two: type I and type II . X, Z in type I must monotonely increase or decrease; in type II, X can be non-monotone and Z must monotonely increase or

decrease.

Command function: G71 is divided into three parts:

- (1): blocks for tool infeed value and tool retraction value, the cutting feedrate, the spindle speed and the tool function when roughing;
- (2): blocks for the block interval, finishing allowance;
- (3): blocks for some continuous finishing path, counting the roughing path without being executed actually when executing G71.

According to the finishing path, the finishing allowance, the path of tool infeed and tool retract, the system automatically counts the path of roughing, the tool cuts the workpiece in paralleling with Z, and the roughing is completed by multiple executing the cutting cycle tool infeed \rightarrow cutting \rightarrow tool retraction. The start point and the end point are the same one. The code is applied to the formed roughing of non-formed rod.

Command format:

Type 1:			Type II :	
G71 U (△d) R (e) F S T	;	(1)	G71 U (△d) R (e) F S T ;	(1)
G71 P (ns) Q (nf) U(∆u)W(∆	∆w);	(2)	G71 P (ns) Q (nf) U(\triangle u)W(\triangle w);	(2)
N(ns) G0/G1 X(U);			N(ns) G0/G1 X(U) Z(W);	
;			;	
F;	>	(3)	F;	. (3)
S;			S;	
N(nf);	J		N(nf);	

Code specifications:

- ns∼nf blocks in programming must be followed G71 blocks. If they do not follow closely G71 blocks, after the system executes roughing, it executes from the next block of G71;
- ns block belongs to G00, G01 in group 01. When ns block does not contain Z(W), it is type 1; when it contains Z(W), it is type 2;
- In ns∼nf blocks, for type 1, X, Z dimension must monotonously change (always increase or decrease); for type 2, Z dimension must monotonously change;
- 4. ns~nf blocks are used to count the roughing path and the blocks are not executed when G71 is executed. F, S, T codes of ns~nf blocks are invalid when G71 is executed, at the moment, F, S, T codes of G71 blocks are valid. F, S, T of ns~nf blocks are valid when executing ns~ nf to code G70 finishing cycle;
- In ns∼nf blocks(without ns block), there are only G codes: G01, G02, G03, G04, G96, G97, G98, G99, G40, G41,G42 and the system cannot call subprograms(M98/M99);
- 6. G96, G97, G98, G99, G40, G41, G42 are invalid in G71 and valid in G70, G96, G97, G98;
- 7. When G71 is executed, the system can stop the automatic run and executes the manual move, but returns to the position before manual traversing when G71 is executed again, otherwise, the following path will be wrong;
- 8. When the system is executing the feed hold or single block, the program pauses after the

system has executed end point of current path;

- 9. $\triangle d$, $\triangle u$ are specified by the same U and different with or without being specified P,Q codes;
- 10. G71 cannot be executed in MDI, otherwise, an alarm occurs.

Relevant definitions:

	As Fig. 2-36, Part (3) (ns \sim nf block)defines the finishing path, and the start point
Finishing path	of finishing path (start point of ns block)is the same these of start point and end point of G71, called A point; the first block of finishing path(ns block)is used to X rapid traversing or tool infeed, and the end point of finishing path is called to B point; the end point of finishing path(end point of nf block)is called C point. The finishing path is $A \rightarrow B \rightarrow C$.
	The finishing path is the one after offsetting the finishing allowance (Δu , Δw) and
Roughing path	is the path contour formed by executing G71. A, B, C point of finishing path after offset corresponds separately to A', B', C' point of roughing path, and the final continuous cutting path of G71 is $B' \rightarrow C'$ point
Δd	It is each travel (radius value) of X tool infeed in roughing without sign symbols, and the direction of tool infeed is defined by move direction of ns block. The code value Δd is reserved after executing U (Δd) and the value of NO.5132 is rewritten. The value of system parameter NO.5132 is regarded as the travel of tool infeed when U (Δd) is not input
	It is travel(radius value) of X tool retraction in roughing(radius value) withoutsign
е	symbols, and the direction of tool retraction is opposite to that of tool infeed, the code value e is reserved and the value of system parameter NO.5133 is rewritten after R (e) is executed. The value of system parameter NO.5133 is
	regarded as the travel of tool retraction when R (e) is not input.
ns	Block number of the first block of finishing path
nf	Block number of the last block of finishing path
Δu	X finishing allowance range is as the following table (diameter) with sign symbols. X coordinate offset of roughing path compared to finishing path, i.e. the different value of X absolute coordinates between A' and A. The system defaults $\Delta u=0$ when U(Δu) is not input, i.e. there is no X finishing allowance for roughing cycle
	Z finishing allowance range is as the following table (diameter) with sign
	symbols. X coordinate offset of roughing path compared to finishing path, i.e. the
Δw	different value of X absolute coordinates between A' and A. The system defaults
	$\Delta w=0$ when U (Δw) is not input, i.e. there is no Z finishing allowance for
	roughing cycle
M, S T, F	F: Cutting feedrate; S: Spindle speed; T: Tool number, tool offset number They can be specified in the first G71 or the second ones or program ns \sim nf. M, S, T, F functions of M, S, T, F blocks are invalid in G71, and they are valid in only G70 finishing blocks.

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Address	Incremental metric (mm) input inch(inch) input system		inch(inch) input
U (Δd)	ISB system	0.001~99999.999	0.0001~9999.9999
	ISC system	0.0001~9999.9999	0.00001~999.99999
R (e)	ISB system	0~99999.999	0~9999.9999
	ISC system	0~9999.9999	0~999.99999
$U (\Delta u)$	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999-999.99999
$W(\Delta w)$	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
P (ns)	ISB system	1~99999	1~99999
	ISC system	1~99999	1~99999
Q (nf)	ISB system	1~99999	1~99999
	ISC system	1~99999	1~99999

Coordinate offset direction with finishing allowance:

 Δu , Δw define the coordinates offset and its direction of finishing, and their sign symbols are as follows Fig. 2-36: B \rightarrow C for finishing path, B' \rightarrow C' for roughing path and A is the tool start point.

Execution process: as Fig. 2-37. G71 execution process in type 1: Fig. 2-37.

- 1. Rapidly traverses to A' from A point, X movement is Δu , and Z movement is Δw ;
- X moves from A'is ∆d (tool infeed), ns block is for tool infeed at rapid traverse speed with G0, is for tool infeed at feedrate F with G71, and its direction of tool infeed is that of A→B point;
- 3. Z executes the cutting feeds to the roughing path, and its direction is the same that of Z coordinate A→B point;
- 4. X, Z execute the tool retraction e (45°straight line) at feedrate, the directions of tool retraction is opposite to that of too infeed;
- 5. Z rapidly retracts at rapid traverse speed to the position which is the same that of Z coordinate;
- 6. After executing X tool infeed (Δd+e)again, the end point of traversing tool is still on the middle point of straight line between A' and B'(the tool does not reach or exceed B'), and after executing the tool infeed (Δd+e)again, execute ③; after executing the tool infeed (Δd+e)again, the end point of tool traversing reaches B' point or exceeds the straight line between A'→B' point and X executes the tool infeed to B' point, and then the next step is executed;
- 7. Cutting feed from B' to C' point along the roughing path;
- 8. Rapid traverse to A from C' point and the program jumps to the next clock following nf block after G71 cycle is ended.

Example:

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

SL-州教控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Program: 00004; G00 X200 Z10 M03 S800; (Spindle clockwise with 800 rev/min) G71 U2 R1 F200; (Cutting depth each time 4mm, tool retraction 2mm [in diameter]) $(a \rightarrow e roughing machining, allowance X 0.5mm, Z 0.2mm)$ G71 P80 Q120 U0.5 W0.2; N80 G00 X40 S1200; (positioning) G01 Z-30 F100; (a→b) X60 W-30; $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$ blocks for finishing path (b→c) W-20; (c→d) N120 X100 W-10; (d→e) (a→e blocks for finishing path) G70 P80 Q120; M30; (End of block)

G71: type 2

Direction of the shape in the 2nd axis of the plane (X axis in ZX plane) is not necessary to monotonous rise or fall, and there may be up to 10 groovings, which is shown below:

But, external contour along Z must mononously rise or fall, and the following contour cannot be machined:

The first tool must be vertical: the machining can be executed when the shape along Z changes mononously, which is shown below:

The tool retraction should be executed after turning, and the retraction amount is specified by R (e) or No 5133, which is shown below:

Fig. 2-42

Type 2 code execution process:

Fig. 2-43 Note 1: In ns block, X (U), Z(W) must be specified, and W0 is done when Z does not move.

数控 GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual 【Programming & Operation】

Note 2: The finishing allowance is specified to X direction, is invalid for Z direction.

- Note 3: When the current grooving is completed, the tool retraction amount is left to make the tool approach the workpiece (Label 25, 26) with G1 speed after the current grooving is done to execute the next grooving. When the retraction amount is 0 or the left distance is less than retraction amount, the tool approaches the workpiece with G1 speed.
- Note 4: The finishing path (ns~nf block), Z dimension must mononously change (always increase or decrease)
- Note 5: When there is an arc in finishing path (ns~nf), # 3410 parameter (the arc radius permits error) cannot be non-zero, i.e., the permitting function of arc radius error cannot be activated.
- Note 6: Radius error is irrelevant to cutting allowance, and radius error is permitted and checks whether the alarm occurs.

2.19.2 Radial Roughing Cycle G72

Command function: G72 is divided into three parts:

- (1) defining the travels of tool infeed and tool retraction, the cutting speed, the spindle speed and the tool function in roughing;
- (2) defining the block interval, finishing allowance;
- (3) for some continuous finishing path, counting the roughing path without being executed actually when G72 is executed.

According to the finishing path, the finishing allowance, the path of tool infeed and retract tool, the system automatically counts the path of roughing, the tool cuts the workpiece in paralleling with Z, and the roughing is completed by multiple executing the cutting cycle tool infeed \rightarrow cutting feed \rightarrow tool retraction. The start point and the end point of G72 are the same one. The code is applied to the formed roughing of non-formed rod.

Code specifications:

- ns∼nf blocks in programming must be followed G72 blocks. If they are in the front of G72 blocks, and after the system executes roughing cycle, and then executes the next program following G72;
- ns~nf blocks are used for counting the roughing path and the blocks are not executed when G72 is executed. F, S, T codes of ns~nf blocks are invalid when G72 is executed, at the moment, F, S, T codes of G72 blocks are valid. F, S, T of ns~nf blocks are valid when executing ns~nf to code G70 finishing cycle;
- 3. There are G00,G01 without the word X(U) in ns block, otherwise the system alarms;
- 4. X,Z dimensions in finishing path(ns~nf blocks) must be changed monotonously (always

increasing or reducing) for the finishing path;

- In ns∼nf blocks, there are only G codes: G01, G02, G03, G04, G96, G97, G98, G99, G40, G41,G42 and the system cannot call subprograms(M98/M99);
- 6. G96, G97, G98, G99, G40, G41, G42 are invalid in G72 and valid in G70;
- When G72 is executed, the system can stop the automatic run and manual traverse, but return to the position before manual traversing when G72 is executed again, otherwise, the following path will be wrong;
- 8. When the system is executing the feed hold or single block, the program pauses after the system has executed end point of current path;
- 9. $\triangle d$, $\triangle u$ are specified by the same U and different with or without being specified P,Q codes;
- 10. G72 cannot be executed in MDI, otherwise, the system alarms.

Relevant definitions:

Finishing	the above-mentioned Part ⁽³⁾ of G71(ns \sim nf block)defines the finishing path, and the start point of finishing path (i.e. start point of ns block)is the same these of start point and end point of G72, called A point; the first block of finishing
path	path(ns block)is used for Z rapid traversing or cutting feed, and the end point of finishing path is called to B point; the end point of finishing path(end point of nf block)is called to C point. The finishing path is $A \rightarrow B \rightarrow C$
	The finishing path is the one after offsetting the finishing allowance $(\Delta u, \Delta w)$
Roughing	and is the path contour formed by executing G/2. A, B, C point of finishing path
path	after offset corresponds separately to A', B', C'point of roughing path, and the
	final continuous cutting path of G72 is $B' \rightarrow C'$ point
	It is each travel of Z tool infeed in roughing without sign symbols, and the
	direction of tool infeed is defined by move direction of ns block. Δd is reserved
Δd	after the system executes W (Δd) and NO.5132 value is modified. The value of
	system parameter NO.05132 is regarded as the travel of tool infeed when W
	(Δd) is not input
e	It is each travel of Z tool infeed in roughing without sign symbols, and the direction of tool retraction is opposite to that of tool infeed; after R(e) is executed, e value e is reserved and the system modifies No.5133 value. The value of system parameter NO.5133 is regarded as the travel of tool retraction when R (e) is not input
ns	Block number of the first block of finishing path
nf	Block number of the last block of finishing path
Δu	X finishing allowance in roughing, (X coordinate offset of roughing path compared to finishing path, i.e. the different value of X absolute coordinate
	between A'and A, diameter value with sign symbols)
	Z finishing allowance in roughing, its value: -9999.999~9999.999 (Z coordinate
Δw	offset of roughing path compared to finishing path, i.e. the different value of X
	absolute coordinates between A and A, with sign symbols)

<u>@</u>┌─州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

	They can be specified in the first G72 or the second ones or program ns \sim nf. M,
M, S, T, F	S, T, F functions of M, S, T, F blocks are invalid in G72, and they are valid in
	only G70 finishing blocks

Address	Incremental	Metric (mm) input	Inch (inch) input
	system		
$(b\Delta) W$	ISB system	0.001~99999.999	0.0001~9999.9999
	ISC system	0.0001~9999.9999	0.00001~999.99999
R (e)	ISB system	0~99999.999	0~9999.9999
	ISC system	0~9999.9999	0~999.99999
$U(\Delta u)$	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
$W(\Delta w)$	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
P (ns)	ISB system	1~99999	1~99999
	ISC system	1~99999	1~999999
Q (nf)	ISB system	1~99999	1~99999
	ISC system	1~99999	1~99999

Execution process: Fig. 2-44.

- 1 X rapidly traverses to A' from A point, X travel is $\Delta u,$ and Z travel is $\Delta w;$
- ② X moves from m A'is ∆d(tool infeed), ns block is for tool infeed at rapid traverse speed with G0, is for tool infeed at G72 feedrate F in G1, and its direction of tool infeed is that of A→B point;
- ③ X executes the cutting feeds to the roughing path, and its direction is the same that of X coordinate B→C point;
- ④ X, Z execute the tool retraction e (45°straight line)at feedrate, the directions of tool retraction is opposite to that of tool infeed ;
- ⑤ X rapidly retracts at rapid traverse speed to the position which is the same that of Z coordinate;
- ⑥ After Z tool infeed (Δd+e)again is executed, the end point of traversing tool is still on the middle point of straight line between A' and B'(the tool does not reach or exceed B'), and after Z executes the tool infeed (Δd+e)again, ③ is executed; after the tool infeed (Δd+e) is executed again, the end point of tool traversing reaches B' point or exceeds the straight line between A'→B' point and Z executes the tool infeed to B' point, and then the next step is executed;
- O Cutting feed from B' to C' point along the roughing path;
- ⑧ Rapidly traverse to A from C' point and the program jumps to the next clock following nf block after G71 cycle is completed.

Coordinate offset direction with finishing allowance:

 Δu , Δw define the coordinates offset and its direction of finishing, and their sign symbols are as follows Fig. 2-45: B \rightarrow C for finishing path, B' \rightarrow C' for roughing path and A is the start-up tool point.

Example: Fig.2-46

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Program: O0005;

G00 X176 Z10 M3 S500 T0202; (Change No.2 tool and execute its compensation, spindle rotation with 500 rev/min)

G72 W2.0 R0.5 F300; G72 P10 Q20 U0.2 W0.1;

0.1 mm)N10 G00 Z-55 S800; (Rapid traverse) G01 X160 F120; (Infeed to a point) X80 W20; (Machining a—b) W15; (Machining b→c) N20 X40 W20; (Machining c→d) G70 P10 Q20; (Finishing a→d)

(Tool infeed 2mm, tool retraction 0.5mm)

(Roughing a--d, X roughing allowance 0.2mm and Z 0.1mm)

 \succ Blocks for finishing path

2.19.3 Closed Cutting Cycle G73

M30:

Command functions: G73 is divided into three parts:

- (1) Blocks for defining the travels of tool infeed and tool retraction, the cutting speed, the spindle speed and the tool function when roughing;
- (2) Blocks for defining the block interval, finishing allowance;
- (3) Blocks for some continuous finishing path, counting the roughing path without being executed actually when executing G73.

According to the finishing allowance, the travel of tool retraction and the cutting times, the system automatically counts the travel of roughing offset, the travel of each tool infeed and the path of roughing, the path of each cutting is the offset travel of finishing path, the cutting path approaches gradually the finishing one, and last cutting path is the finishing one according to the finishing allowance. The start point and end point of G73 are the same one, and G73 is applied to roughing for the formed rod. G73 is non-modal and its path is as Fig.2-47.

Command format: G73 U(\triangle i)	$W(\triangle k) R (d) F S T$	(1)
G73 P(ns)	Q(nf) U($ riangle$ u) W($ riangle$ w)	(2)
N (ns);	J	
;		
F;		
S;	((3)
·····;		
N (nf);	J	

Code specifications:

- ns~nf blocks in programming must be followed G73 blocks. If they are in the front of G72 blocks, and after the system executes roughing cycle, and then executes the next program following G73;
- 2. ns~nf blocks are used for counting the roughing path and the blocks are not executed when G73 is executed. F, S, T codes of ns~nf blocks are invalid when G71 is executed, at the moment, F, S, T codes of G73 blocks are valid. F, S, T of ns~nf blocks are valid when executing ns~nf to code G70 finishing cycle.
- 3. There are only G00, G01 in ns block.
- 4. In ns∼nf blocks, there are only G codes:G00, G01, G02, G03, G04, G96, G97, G98, G99, G40, G41,G42 and the system cannot call subprograms(M98/M99);
- 5. G96, G97, G98, G99, G40, G41, G42 are invalid in G73 and valid in G70;
- When G73 is executed, the system can stop the automatic run and manual traverse, but return to the position before manual traversing when G73 is executed again, otherwise, the following path will be wrong;
- 7. When the system is executing the feed hold or single block, the program pauses after the system has executed end point of current path;
- 8. $\triangle i$, $\triangle u$ are specified by the same U and Δk , Δw are specified by the same U, and they are different with or without being specified P, Q codes;
- 9. G73 cannot be executed in MDI, otherwise, the system alarms;
- 10. Z must be the monotonous in the cycle body specified by P and Q. Z tool retraction and finishing allowance are set to 0 when the system executes X non-monotonous workpiece. When No. 5102 Bit0 (MRI) is set to 1, the system does not alarm;
- 11. When the programming is executed, and the initial positioning point retreats one tool infeed value in the direction of cutting but the result is in the contour range, the dry run is executed to observe whether its own path of the system has overcutting because the tool retraction direction is the same that of tool infeed in programming state.

Relevant definitions:

Finishing path	The above-mentioned Part 3 of G73(ns \sim nf block)defines the finishing path, and
	the start point of finishing path (start point of ns block)is the same these of start
	point and end point of G73, called A point; the end point of the first block of

г

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

	finishing path(ns block)is called B point; the end point of finishing path(end point		
	of nf block)is called C point. The finishing path is $A \rightarrow B \rightarrow C$		
Roughing path	It is one group of offset path of finishing one, and the roughing path times are the same that of cutting. After the coordinates offset, A, B, C of finishing path separately corresponds to A _n , B _n , C _n of roughing path(n is the cutting times, the first cutting path is A ₁ , B ₁ , C ₁ and the last one is A _d , B _d , C _d). The coordinates offset value of the first cutting compared to finishing path is $(\Delta i \times 2 + \Delta u, \Delta w + \Delta k)$ (diameter programming), the coordinates offset value of the last cutting compared to finishing path is (Δu , Δw), the coordinates offset value of each cutting compared to the previous one is ($\Delta i \times 2/d-1$, $\Delta k/d-1$) Travel of X tool retraction in roughing is the following table (radius value with sign symbols), Δi is equal to X coordinate offset value (radius value) of A ₁ point		
Δi	compared to A _d point. The X total cutting travel(radius value) is equal to $ \Delta i $ in roughing, and X cutting direction is opposite to the sign symbol of Δi : $\Delta i > 0$, cut in X negative direction in roughing. It is reserved after Δi code value is executed and the system rewrites No.5135 value. NO.5135 value is regarded as the travel of X tool retraction of roughing when U (Δi) is not input		
Δk	Travel of Z tool retraction in roughing is the following table (radius value with sign symbols), Δk is equal to X coordinate offset value (radius value) of A1point compared to A _d point. The Z total cutting travel(radius value) is equal to $ \Delta k $ in roughing, and Z cutting direction is opposite to the sign symbol of Δk : $\Delta k > 0$, cut in Z negative direction in roughing. It is reserved after Δk code value is executed and the system rewrites No.5136 value. NO.5136 value is regarded as the travel of X tool retraction of roughing when W (Δk) is not input		
d	It is the cutting times and its range is referred to the following table. R5 means the closed cutting cycle is completed by 5 times cutting. R (d) is reserved after it is executed and the system rewrites NO.5137. The value of system parameter NO.5137 is regarded as the cutting times when R (d) is not input		
ns	Block number of the first block of finishing path		
nf	Block number of the last block of finishing path		
Δu	It is X finishing allowance as the following table (diameter value with sign symbols) and is the X coordinate offset of roughing contour compared to finishing path, i.e. the different value of X absolute coordinates of A ₁ compared to A. $\Delta u > 0$, it is the offset of the last X positive roughing path compared to finishing path. The system defaults $\Delta u=0$ when U (Δu) is not input, i.e. there is no X finishing allowance for roughing cycle		
Δw	It is Z finishing allowance as the following table -99.999~99.999 (unit: mm) and is the Z coordinate offset of roughing contour compared to finishing path, i.e. the different value of Z absolute coordinate of A ₁ compared to A. $\Delta w > 0$, it is the offset of the last roughing path compared to finishing path in Z positive direction.		

	The system defaults $\Delta w=0$ when W (Δw) is not input, i.e. there is no Z finishing		
	allowance for roughing cycle		
	They can be specified in the first G73 or the second ones or program ns \sim nf. M,		
M, S, T, F	S, T, F functions of M, S, T, F blocks are invalid in G73, and they are valid in		
	G70 finishing blocks		

Address	Incremental	Metric (mm) input	Inch (inch) input
	system		
U (Δi)	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
$W\left(\Delta k\right)$	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
R (d)	ISB, ISC	$1\sim 999$ (times) (ignore	$1{\sim}999$ (times) (ignore decimal
		decimal part)	part)
U (Δ u)	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
W(A w)	ISB system	-99999.999~99999.999	-9999.9999~9999.9999
	ISC system	-9999.9999~9999.9999	-999.99999~999.99999
P (ns)	ISB system	1~99999	1~99999
	ISC system	1~99999	1~99999
Q (nf)	ISB system	1~99999	1~99999
	ISC system	1~99999	1~99999

Execution process:(Fig. 2-47)

(1) $A \rightarrow A_1$: Rapid traverse;

(2) First roughing $A_1 \rightarrow B_1 \rightarrow C_1$:

 $A_1 \rightarrow B_1$: Rapid traverse speed in ns block in G0, cutting feedrate specified by G73 in ns block in G1;

 $B_1 \rightarrow C_1$: Cutting feed.

 $(3) C_1 \rightarrow A_2: Rapid traverse;$

(4) Second roughing $A_2 \rightarrow B_2 \rightarrow C_2$:

 $A_2 \rightarrow B_2$: Rapid traverse speed in ns block in G0, cutting feedrate specified by G73 in ns block in G1;

 $B_2 \rightarrow C_2$: Cutting feed.

(5) $C_2 \rightarrow A_3$: rapid traverse;

.....

No. n times roughing, $A_n \rightarrow B_n \rightarrow C_n$:

 $A_n \rightarrow B_n$: ns Rapid traverse speed in ns block in G0, cutting feedrate specified by G73 in ns block in G1;

 $B_n \rightarrow C_n$: Cutting feed.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

 $C_n \rightarrow A_{n+1}$: Rapid traverse;

.....

Last roughing, $A_d {\rightarrow} B_d {\rightarrow} C_d$:

 $A_d \rightarrow B_d$: Rapid traverse speed in ns block in G0, cutting feedrate specified by G73 in ns block in G1;

 $B_d \rightarrow C_d$: Cutting feed.

 $C_d \rightarrow A$: Rapid traverse to start point;

Fig. 2-47 G73 run path

Coordinate offset direction with finishing allowance:

 Δi , Δk define the coordinates offset and its direction of roughing, Δu , Δw define the coordinates offset and cut-in direction in finishing; Δi , Δk , Δu , Δw can consist of many groups. Generally, the sign symbols of Δi and Δu are consistent, the sign symbols of Δk and Δw are consistent, there are four kinds of combination as Fig. 2-48,A for start-up tool point, $B \rightarrow C$ for workpiece contour, $B' \rightarrow C'$ for roughing contour and $B'' \rightarrow C''$ for finishing path.

Example: Fig. 2-49

Program: O0006;

G99 G00 X200 Z10 M03 S500;

G73 U1.0 W1.0 R3;

- (Specify feedrate per rev and position start point and start spindle)
- (X tool retraction with 15mm, Z 15mm)
- (X roughing with 2 allowance and Z 1mm)
- G73 P14 Q19 U0.5 W0.3 F0.3 ; N14 G00 X80 W-40 ; G01 W-20 F0.15 S600 ; X120 W-10 ; W-20 ; G02 X160 W-20 R20 ; N19 G01 X180 W-10 ; G70 P14 Q19 M30;
- Blocks for finishing

(Finishing)

2.19.4 Finishing Cycle G70

Command function: The tool executes the finishing of workpiece from start point along with the finishing path defined by ns~nf blocks. After executing G71, G72 or G73 to roughing, execute G70 to finishing and single cutting of finishing allowance is completed. The tool returns to start point and execute the next block following G70 block after G70 cycle is completed.

```
Command format: G70 P (ns) Q (nf) ;
```

Code specifications:

- 1. ns: Block number of the first block of finishing path, range: 1~99999;
 - nf: Block number of the last block of finishing path, range: 1~99999;

G70 path is defined by programmed one of ns \sim nf blocks. Relationships of relative position of ns, nf block in G70 \sim G73 blocks are as follows:

 G71/G72/G73 N (ns);	;	
; F;		Blocks for finishing path
S;		
N (nf);		
G70 P (ns)	Q (nf);	
)

- 2. G70 is compiled following ns \sim nf blocks;
- 3. F, S, T in ns \sim nf blocks are valid when executing ns \sim nf to code G70 finishing cycle;
- 4. G96, G97, G98, G99, G40, G41, G42 are valid in G70;
- 5. When G70 is executed, the system can stop the automatic run and manual traverse, but return to the position before manual traversing when G70 is executed again, otherwise, the following path will be wrong;
- 6. When the system is executing the single block, the program pauses after the system has executed end point of current path;
- 7. G70 cannot be executed in MDI mode, otherwise, an alarm occurs.

Note: When the tool cuts to the end point of finishing shape in the finishing cycle, the two axes simultaneously returns to the cycle start point, so the user should pay attention to avoid overcut.

2.19.5 Axial Grooving Multiple Cycle G74

Command function: Axial (X) tool infeed cycle compounds radial discontinuous cutting cycle: Tool infeeds from start point in radial direction(Z), retracts, infeeds again, and again and again, and last tool retracts in axial direction, and retracts to the Z position in radial direction, which is called one radial cutting cycle; tool infeeds in axial direction and execute the next radial cutting cycle; cut to end point of cutting, and then return to start point (start point and end

point are the same one in G74), which is called one radial grooving compound cycle. Directions of axial tool infeed and radial tool infeed are defined by relative position between end point X(U)Z(W) and start point of cutting. The code is used to machine radial loop groove or column surface by radial discontinuously cutting, breaking stock and stock removal.

Command format: G74 R (e);

G74 X (U) Z (W) P (Δi) Q (Δk) R (Δd) F ;

Code specifications:

- 1. The cycle movement is executed by Z (W) and P (Δk) blocks of G74, and the movement is not executed if only "G74 R (e); " block is executed;
- 2. Δd and e are specified by the same address and whether there are Z (W) and P (Δk) word or not in blocks to distinguish them;
- 3. The tool can stop in Auto mode and traverse in Manual mode when G74 is executed, but the tool must return to the position before executing in Manual mode when G74 is executed again, otherwise the following path will be wrong.
- 4. When the single block is running, programs pauses after each axial cutting cycle is completed.
- 5. R (Δd) must be omitted in blind hole cutting, and so there is no distance of tool retraction when the tool cuts to axial end point.

	Starting position of axial tool infeed for each axial cutting cycle, defining with $A_n(n=1,2,3)$, Z coordinate of A_n is the same that of start point A, the
Start point of axial	different value of X coordinate between A_n and A_{n-1} is Δi . The start point A_1
cutting cycle	of the first axial cutting cycle is the same as the start point A, and the X
	coordinate of start point (A_f) of the last axial cutting cycle is the same that of
	cutting end point
	Starting position of axial tool infeed for each axial cutting cycle, defining with
End point of axial	$B_n(n=1,2,3)$, Z coordinate of B_n is the same that of cutting end point, X
tool infeed	coordinate of B_n is the same that of A_n , and the end point (B_f) of the last
	axial tool infeed is the same that of cutting end point
Fuel a sint of	End position of radius tool infeed(travel of tool infeed is Δd) after each axial
radius tool	cutting cycle reaches the end point of axial tool infeed, defining with
	$C_n(n=1,2,3)$, Z coordinate of C_n is the same that of cutting end point,
retraction	and the different value of X coordinate between C_n and A_n is Δd
	End position of axial tool retraction from the end point of radius tool
End point of axial	retraction, defining with $D_n(n=1,2,3)$, Z coordinate of D_n is the same that
cutting cycle	of start point, X coordinate of D_n is the same that of C_n (the different value of
	X coordinate between it and A_n is Δd)

Relevant definitions:

Cutting and point	It is defined by X (U) _ Z (W) _ ,and is the end point B_f of last axial tool
Cutting end point	infeed
	It is the travel of tool retraction after each axial (Z) tool infeed without sign
	symbols as the following table. The code value is reserved after executing R
R (e)	(e) and the value of NO.5139 is rewritten. The value of NO.5139 is
	regarded as the travel of tool retraction when R (e) is not input
N N	absolute coordinate value of the 2 nd axis (X in ZX plane) in path diagram B
X	point
	Relative movement amount of the 2^{nd} (U in ZX plane) in path diagram A \rightarrow B
U	plane.(for G code system A. X_,Z_ is executed for other conditions)
_	absolute coordinate value of the 1 st axis (Z in ZX plane) in path diagram C
۷.	point
14/	Relative movement amount of the 2^{nd} (W in ZX plane) in path diagram A \rightarrow C
VV	plane. (for G code system A. X_,Z_ is executed for other conditions)
	Travel of radial(X) cutting for each axial cutting cycle without sign symbols,
Ρ <u>(ΔΙ)</u>	and the value range is referred to the following table
0 (44)	Travel of Z discontinuous tool infeed without sign symbols in axial(Z) cutting,
<u>Q (Δκ)</u>	and the value range is referred to the following table
	Travel (radius value) of radial (X) tool retraction after cutting to end point of
	axial cutting. The value range is referred to the following table. The radial (X)
κ <u>(Δα)</u>	tool retraction is 0 when R (Δd) is omitted and the system defaults the axial
	cutting end point. The radial (X) tool retraction is 0 when P (Δi) is omitted

Address	Incremental system	metric (mm) input	Inch (inch) input
Ρ(Δi)	ISB system	1~999999999(unit : 0.001mm)	1~999999999(unit : 0.0001inch)
Q(Δk)	ISC system	1~999999999(unit : 0.0001mm)	1~999999999(unit : 0.00001inch)
R(e)	ISB system	0~99999.999mm	$0{\sim}9999.9999$ inch
R(∆d)	ISC system	0∼9999.9999 mm	$0{\sim}999.99999$ inch

Fig.2-50 G74 path

Code execution process: Fig. 2-50.

- Z executes the axial cutting feed △k from the start point of axial cutting cycle An. When Z coordinate of cutting end point is less than that of the start point, Z negatively feeds, otherwise, Z positively feed;
- 2 Z executes the axial tool retraction e rapidly, and its tool retraction direction is opposite to the feed direction of Step 1;
- ③ When Z executes feed cutting (Δk+e) again, and the feed end point is still between the axial cutting cycle starting point An and the axial tool infeed end point Bn. It executes the cutting feed (Δk+e) again, and executes the Step ②; after Z executes the cutting feed (Δk+e), its feed end point reaches Bn or is not between An and Bn, Z executes the cutting feed to Bn, and execute the Step ④;
- ④ X executes the radial tool retraction △d (radius value) rapidly to Cn. When X coordinate of cutting end point Bf is less than that of the start point A, X positively executes tool retraction, otherwise, Z executes negatively tool retraction;
- (5) Z executes the axial tool retraction to Dn rapidly, and the n times cutting cycle ends. When the current is not the last axial cutting cycle, the system executes the Step (6); when the current is the last axial cutting cycle, the system executes the Step (7);
- ⑥ X executes the rapid tool infeed, and its infeed direction is opposite to the Step ④. After X executes the tool infeed (△d+△i) (radius value), the tool infeed end point is still between A and Af (it is the start point of the last axial cutting cycle), X executes the rapid tool infeed

 $(\triangle d + \triangle i)$ (radius value), i.e., : Dn \rightarrow An+1, then executes the Step ① (start the next axial cutting cycle); after X executes ($\triangle d + \triangle i$) (radius value), the tool infeed end point reaches Af or is not between Dn and Af, X performs the rapid traverse to Af, then, executes the Step ①, and starts the last axial cutting cycle;

 $\ensuremath{\overline{0}}$ X rapidly returns to the start point A, and G74 execution processing ends. **Example:** Fig. 2-51

Fig.2-51

Program:

O0007;	
G0 X40 Z5 M3 S500; (Start spindle and position to start point of machining)
G74 R0.5 ;	Machining cycle)
G74 X20 Z-20 P3000 Q5000 F5	i0; (Z tool infeed 5mm and tool retraction 0.5mm each time;
	rapid return to start point(Z5) after cutting feed to end
	point(Z-20), X tool infeed 3mm and cycle the
	above-mentioned steps)
M30:	(End of program)

2.19.6 Radial Grooving Multiple Cycle G75

Command function: Axial (Z) tool infeed cycle compounds radial discontinuous cutting cycle: Tool infeeds from start point in radial direction, retracts, infeeds again, and again and again, and last tool retracts in axial direction, and retracts to position in radial direction, which is called one radial cutting cycle; tool infeeds in axial direction and execute the next radial cutting cycle; cut to end point of cutting, and then return to start point (start point and end point are the same one in G75), which is called one radial grooving compound cycle. Directions of axial tool infeed and radial tool infeed are defined by relative position between end point X (U) Z (W) and start point of cutting, breaking stock and stock removal.

Command format: G75 R (e);

G75 X (U) Z (W) P (Δi) Q (Δk) R (Δd) F ;

Command explanations:

 The cycle movement is executed by X(W) and P(Δi) blocks of G75, G75 is not executed when there is no X(U) in G75 block. When only "G75 R(e); " block is executed and only No.5139

value is modified, the cycle operation cannot be executed;

- 2. Δd and e are specified by the same address R and whether there are X(U) or not in blocks can distinguish them;
- 3. The tool can stop in Auto mode and traverse in Manual mode when G75 is executed, but the tool must return to the position before executing in Manual mode when G75 is executed again, otherwise the following path will be wrong;
- 4. When the system is executing the single block, the program pauses after the system has executed end point of current path;
- 5. R (Δd) must be omitted in grooving, and so there is no travel of tool retraction when the tool cuts to radial cutting end point.

Relevant definitions:

	Starting position of axial tool infeed for each radial cutting cycle, defined by
Start point of	A_n (n=1,2,3),X coordinate of A_n is the same that of start point A, the different
radial cutting	value of X coordinate between A_n and A_{n-1} is $\underline{\Delta k}$. The start point A_1 of the first
cvcle	radial cutting cycle is the same as the start point A and Z start point (A $_{\rm f}$) of the last
	axial cutting cycle is the same that of cutting end point
End point of	Starting position of radial tool infeed for each radial cutting cycle, defined by
radial tool	$B_n(n=1,2,3)$, X coordinates of B_n is the same that of cutting end point, Z
	coordinates of B_n is the same that of A_n , and the end point (B_f) of the last radial tool
infeed	infeed is the same that of cutting end point
End raint of	End position of axial tool infeed(travel of tool infeed is Δd) after each axial cutting
End point of	cycle reaches the end point of axial tool infeed, defining with $C_n(n=1,2,3)$, X
axial tool	coordinate of C_{n} is the same that of cutting end point, and the different value of Z
retraction	coordinate between C_{a} and A_{a} is Ad
	End position of radial tool retraction from the end point of axial tool retraction
End point of	End position of radial tool retraction from the end point of axial tool retraction,
radial	defined by $D_n(n=1,2,3,\ldots)$, X coordinate of D_n is the same that of start point, Z
cutting cycle	coordinates of D_n is the same that of C_n (the different value of Z coordinate between
	it and A_n is Δd)
Cutting end	It is defined by X (U) _ Z (W) _ ,and is defined with $B_f of$ the last radial tool
point	infeed.
	It is the travel of tool retraction after each radial(X) tool infeed without sign symbols
	and its value range is referred to the following table. The code value is reserved and
R <u>(e)</u>	the value of system parameter NO.5139 is rewritten after R (e) is executed. The
	value of NO.5139 is regarded as the travel of tool retraction when R (e) is not input
X	absolute coordinate value of the 2 nd axis (X in ZX plane) in path diagram B point
	Relative movement amount of the 2^{nd} (U in ZX plane) in path diagram A \rightarrow B plane.
U	(for G code system A X Z is executed for other conditions)
7	absolute coordinate value of the 1 st axis (7 in 7X plane) in path diagram C point
<u> </u>	Polotive meters and of the 2nd (M is 7V plane) is not blickness A = 0 plane
w	Relative movement amount of the Z (vv in ZX plane) in path diagram A \rightarrow C plane.
	(for G code system A. X_,Z_ is executed for other conditions)
Ρ (Δi)	Travel (radius value) of X discontinuous tool infeed without sign symbols in radial

	(X) tool infeed, and the value range is referred to the following table
Q <u>(Δk)</u>	Travel of radial(Z) cutting for each axial cutting cycle without sign symbols, and the
	value range is referred to the following table
	Travel of axial (Z) tool retraction after cutting to radial end point. The value range is
R <u>(∆d)</u>	referred to the following table.
	The system defaults travel of the axial (Z) tool retraction is 0 when R (Δd) and Q
	(Δk) are omitted
	The system defaults the negative tool retraction is done when Z(W) is omitted.
	The radial (X) tool retraction is 0 when P (Δi) is omitted

Address	Incremental system	Metric (mm) input	Inch (inch) input
Ρ (Δi)	ISB system	1~99999999 (0.001mm)	1~99999999 (0.0001inch)
$Q(\Delta k)$	ISC system	1~99999999(0.0001mm)	1~99999999 (0.00001inch)
R (e)	ISB system	0~99999.999mm	0 \sim 99999.9999 inch
$R(\Delta d)$	ISC system	0 \sim 99999.9999 mm	0 \sim 999.99999 inch

Fig. 2-52 G75 path

Execution process: Fig. 2-52

1X executes the radial cutting feed $\triangle k$ from the start point of radial cutting cycle An. When X coordinate of cutting end point is less than that of the start point, X negatively feeds, otherwise, X positively feed;

- (2) X executes the radial tool retraction e rapidly, and its tool retraction direction is opposite to the feed direction of Step (1);
- ③When X executes feed cutting (Δi+e) again, and the feed end point is still between the radial cutting cycle starting point An and the axial tool infeed end point Bn. It executes the cutting feed (Δi+e) again, and executes the Step ②; after X executes the cutting feed (Δi+e), its feed end point reaches Bn or is not between An and Bn, X executes the cutting feed to Bn, and execute the Step ④;
- ④Z executes the axial tool retraction △d (radius value) rapidly to Cn. When Z coordinate of cutting end point Bf is less than that of the start point A, Z positively executes tool retraction, otherwise, Z executes negatively tool retraction;
- ⑤X executes the radial tool retraction to Dn rapidly, and the n times cutting cycle ends. When the current is not the last radial cutting cycle, the system executes the Step ⑥; when the current is the last radial cutting cycle, the system executes the Step ⑦;
- (6) Z executes the axial tool infeed rapidly, and its infeed direction is opposite to the Step (4). After Z executes the tool infeed $\triangle d + \triangle k$) (radius value), the tool infeed end point is still between A and Af (it is the start point of the last radial cutting cycle), Z executes the rapid tool infeed $(\triangle d + \triangle k)$, i.e., : Dn \rightarrow An+1, then executes the Step (1) (start the next radial cutting cycle); after Z executes ($\triangle d + \triangle k$), the tool infeed end point reaches Af or is not between Dn and Af, Z performs the rapid traverse to Af, then, executes the Step (1), and starts the last radial cutting cycle;

O X rapidly returns to the start point A, and G75 execution processing ends..

Example: Fig. 2-53

Program:

O0008;

G00 X150 Z50 M3 S500;(Start spindle with 500 rev/min)G0 X125 Z-20;(Position to start point of machining)G75 R0.5 F150;(Machining cycle)

G75 R0.5 F150; (Machining cycle) G75 X40 Z-50 P6000 Q3000; (X tool infeed 6mm every time, tool retraction 0.5mm, rapid returning to start point (X125) after infeeding to end point

(X40), Z tool infeed 3mm and cycle the above-mentioned steps to continuously run programs)

G0 X150 Z50; (Return to start point of machining)

M30;

(End of program)

2.19.7 Notes for Multi Cycle Machining

- Note 1. When the multi cycle blocks are executed, they should be the specified address P, Q, X, Z, U, W, R of each block;
- Note 2. The block specified by P in G71, G72, G73 should be G00 or G01. When there is no code, the system alarms;
- Note 3. In MDI and DNC mode, G70, G71, G72 or G73 can not be specified, otherwise, an alarm occurs. But in MDI and DNC mode, G74, G75 or G76 can be specified;
- Note 4: The block quantity of G70, G71, G72 or G73 in the sequence numbers specified by P and Q cannot exceed 100;
- Note 5: The blocks in the serial numbers specified by P and Q in G71, G72 or G73 cannot specify the following code:
 - (1) non-modal G code except for G04 in group 00;
 - (2) all G codes except for G00, G01, G02, G03 in group 01;
 - (3) G20 and G21;
 - (4) M98 and M99;
- Note 6: The skip function should not be executed in the blocks of their serial number specified by P and Q. when the skip function is used in the blocks of their serial numbers specified by P and Q.
- Note 7: The tool nose radius compensation is invalid in G71 \sim G76.
- Note 8: No.5104 Bit2 (FCK) sets whether G71, G72 or G73 executes the outer check. When it is set to1, the check is executed. The system alarms when the positioning point is in the cutting range.
- Note 9: No.5102 Bit1 (MRC) set whether the system alarm when the finishing cycle in G71, G72 is in non-monotonous, and an alarm occurs when Bit1 is set to 1.

2.20 Threading Cutting

GSK988TA/AB CNC system can machine many kinds of thread cutting, including metric/inch single, multi threads, thread with variable lead and tapping cycle. Length and angle of thread run-out can be changed, multiple cycle thread is machined by single sided to protect tool and improve smooth finish of its surface. Thread cutting includes: continuous thread cutting G32, thread cutting with variable lead G34, Z thread cutting G33, Thread cutting cycle G92, Multiple thread cutting cycle G76.

The machine used to thread cutting must be installed with spindle encoder, the transmission ratio between spindle and encoder is set by the parameter. There are two kind of communication connection method. The encoder data is transferred to the CNC by the servo spindle in bus communication mode or the spindle encoder is connected with the CNC by the encoder wires. X or Z traverses to start machine after the system receives spindle signal per rev in thread cutting, and so one thread is machined by multiple roughing, finishing without changing spindle speed.

GSK988TA/TB CNC system can machine many kinds of thread cutting, such as thread cutting without tool retraction groove. There is a big error in the thread pitch because there are the acceleration and the deceleration at the starting and ending of X and Z thread cutting, and so there is length of thread lead-in and distance of tool retraction at the actual starting and ending of thread cutting.

X or Z traverse speed is defined by spindle speed instead of cutting feedrate override in thread

cutting when the pitch is defined. The spindle override control is valid in thread cutting. When the spindle speed is changed, there is error in pitch caused by X or Z acceleration/deceleration, and so the spindle speed cannot be changed and the spindle cannot be stopped in thread cutting, which will cause tool and workpiece to be damaged.

Note: When the modal function is used, M30 (M30 modal in MDI mode cannot be cancelled) in Auto mode or G codes in Group 01 can cancel the mode state.

2.20.1 Thread Cutting with Constant Lead G32

Command function: Executing G32 can machine the metric or inch straight, taper, end face thread and continuous multi-section thread:

Command format: G32 IP_ F_ J_ K_ Q_ **Code specifications:** G32 is modal;

IP_	End point coordinate value. It can be specified by the absolute code value or incremental code value. The system specifies the different IP_ value to execute the straight thread cutting, end face thread cutting and taper thread cutting.
F	Metric pitch is moving distance of long axis when the spindle rotates one-turn and its value range is referred to the following table. After F is executed, it is valid until F with specified pitch is executed again. The pitch F value precision is the last two-digit of the decimal. The value is specified by radius value.
J	Travel in the short axis in thread run-out with positive/negative sign symbols and the value range is referred to the following table; the value is specified by the radius value.
К	Length in the long axis in thread run-out. The value range is referred to the following table without direction; the value is specified by radius value.
Q	Initial angle between spindle rotation one-turn and start point of thread cutting. The value range without the decimal is referred to the following table. Q is non-modal parameter, must be defined every time, it is 0 ⁰ when it is not specified, the system specifies Q different value can cut multi-thread.

Q rules:

- 1. Its initial angle is 0° if Q is not specified;
- 2. For continuous thread cutting, Q specified by its following thread cutting block except for the first block is invalid, namely Q is omitted even if it is specified;
- 3. In ISB mode, Q unit is 0.001°. ISC mode, Q unit is 0.0001°. Example, in ISB mode, Q180000 is input in program if it offsets 180° with spindle one rev; if Q180 or Q180.0, it is 0.18°. When the system specifies the value is more than 360000, it counts based on 360000(360°);
- 4. It is suggested that the system should use G97 instead of the constant surface cutting speed control in thread cutting.

Address	Incremental	Metric (mm) input	Inch (inch) input
	system		
F	ISB	0.01 mm \sim 500 mm	0.0001 inch \sim 9.99inch

	ISC	0.01 mm \sim 500 mm	0.0001 inch \sim 9.99inch
J	ISB	-99999.999 mm~99999.999mm	-9999.9999 inch \sim 9999.9999 inch
	ISC	-9999.9999 mm \sim 9999.9999 mm	-999.99999 inch \sim 999.99999 inch
К	ISB	0~99999.999mm	0~9999.9999 inch
	ISC	0~9999.9999mm	0~999.99999 inch
Q	ISB	0~99999999 (unit: 0.001°)	0~99999999 (unit: 0.001°)
	ISC	0~99999999 (unit: 0.0001°)	0~99999999 (unit: 0.0001°)

Programmed end point of thread

Fig. 2-54 thread run-out

Fig.2-55 G32 path

Difference between long axis and short axis:

Command path:

- Note 1: When the thread run-out, the short axis executes the thread run-out at the speed of No. 1466 value, and the long does at the current thread cutting speed.
- Note 2: J, K are modal. J, K mode is cancelled when the system executes the non thread cutting code; it cannot code J, K value in the 1st block and the middle block when the system continuously executes the thread cutting, but it can specify J0 K0, otherwise, it considers the non continuous thread machining is done. The thread run-out is done when J, K value is executed in the last thread cutting;
- Note 3: There is no thread run-out when J, or J, K is omitted;
- Note 4: When only K is omitted, the long axis does not execute thread run-out, but the short axis executes thread run-out with J value;
- Note 5: There is no thread run-out when J=0;
- Note 6:J≠0, the long axis without thread run-out and the short axis with J value thread run-out: in the course of thread run, after the tool cuts to the thread's end point at the thread feedrate, it retracts vertically along the short axis (the thread run-out speed of short axis is performed when No.466 is set to 0); to avoid of appearing a groove, No.1466 thread run-out speed should be increased properly, and No.1628's acceleration/deceleration time constant of thread run-out should be decreased properly;
- Note 7: If the current block is for thread and the next block is the same, the system does not test the spindle encoder signal per rotation at starting the next block to execute the direct thread cutting, which function can realize continuous thread machining;
- Note 8: The feed hold operation is executed during the thread cutting, and the system displays "Run" and the thread cutting does not stop till the current block is executed. When the thread cutting block is executed in continuous thread machining, the program run pauses after the thread cutting blocks are executed completely;
- Note 9: In Single block, the program stops run after the current block is executed. The program stops run after all blocks for continuous thread cutting are executed;
- Note 10: The thread cutting decelerates to stop when the system resets, emergently stop or its driver alarms;
- Note 11: An alarm occurs when the thread run-out length is more than the thread machined length of the long axis.
- Note 12: In G32, the basic axis code cannot be in the same block with its parallel axis code, otherwise, the system alarms.
- Note 13: When machining the thread in the metric tool machine in the unit of tooth/inch, using the expression calculated value programs F code. For example, when the thread with 10 teeth/inch is machined, using F[25.4/10] programs.
- Note 14: The system automatically checks the spindle speed before machining the thread, the system alarms when the spindle speed is not executed. The spindle speed cannot be checked in the course of the machining.
- Example: Pitch: 2mm. $\delta 1 = 3$ mm, $\delta 2 = 2$ mm, total cutting depth 2mm with two times cut-in.

Program:

O0009;	
G00 X30.14 Z3;	(the first cut-in 1mm)
G32 X51.57 W-75 F2.0;	(the first taper cutting)
G00 X55;	(First taper cutting)
W75;	(Z returns to the start point)
X29.14;	(the second tool infeed 0.5mm) $% \left(\left({{{\mathbf{x}}_{i}}} \right) \right)$
G32 X50.57 W-75 F2.0;	(the second taper thread cutting)
G00 X55;	(Tool retraction)
W75 ;	(Z returns to the start point)
M30;	

2.20.2 Thread Cutting with Variable Lead G34

Command function: G34 can machine the metric, inch straight, tater thread with variable pitch and end thread.

Command format: G34 IP__ F__ J__ K__ R__ Q__;

Code specifications: G34 is modal;

IP_, J_, K_, Q_	Meaning and value range are the same those of G32		
Е	It is the first thread pitch from start point, and its range is the		
F	same that of G32		
	Incremental value or decremental value of spindle per pitch,		
	R=F2-F1, R is with a direction; F1>F2, the pitch decreases when		
R	R is negative; F1 <f2, increases="" is="" pitch="" positive;="" r="" r<="" td="" the="" when=""></f2,>		
	range: ±0.01 inch/pitch~ ±499.99 mm/pitch(metric thread);		
	±0.0001 inch/pitch~ ±9.9899 inch/pitch (inch thread);		
	An alarm occurs when R value exceeds the above range and the		
	pitch exceeds the permissive range because of R		
	increment/decrement or the pitch is negative.		

Command path:

Fig. 2-58

Note: They are the same as those of G32.

Example: First pitch of start point: 4mm, increment 0.2mm per rotation of spindle

Fig.2-59 Variable pitch thread machining

Value: $\delta 1 = 4$ mm, $\delta 2 = 4$ mm, total cutting depth 1mm, total cutting cycle 2 times; the 1st tool infeed 0.7mm.

Program: O0010;

```
      G00 X60 Z4 M03 S500;

      G00 U-10;
      Tool infe

      G00 U-0.7;
      Tool infe

      G34 W-78 F4 J5 K2 R0.2;
      Variable

      G00 U10;
      Tool retr

      Z4;
      Z return:

      G00 X50;
      Tool infe

      G00 U-1.0;
      Tool infe

      G34 W-78 F4 J5 K2 R0.2;
      Variable

      G00 U10;
      Tool infe

      G00 U-1.0;
      Tool infe

      G00 U10;
      Tool retr

      Z4;
      Z return:

      M30;
      X
```

Tool infeed Φ50 Tool infeed Variable pitch thread cutting Tool retraction Z returns to initial point Tool infeed again Φ50 Tool infeed Variable pitch thread cutting Tool retraction Z returns to initial point

2.20.3 Thread Cutting Cycle G92

Command function: Tool infeeds in radial(X) direction and cuts in axial(Z or X, Z) direction from start point of cutting to realize straight thread, taper thread cutting cycle

with constant thread pitch. Thread run-out in G92: at the fixed distance from end point of thread cutting, Z executes thread interpolation and X retracts with exponential or linear acceleration, and X retracts at rapidly traverse speed after Z reaches to end point of cutting as Fig. 2-60 and Fig.2-61.

Command format: G92 X (U) _ Z (W) _ F_ J_ K_ L Q ; (straight thread cutting cycle) G92 X (U) _ Z (W) _ R_ F_ J_ K_ L Q ; (taper thread cutting cycle)

Code specifications: G92 is modal;

	•
Х	X absolute coordinate of end point of cutting
U	Different value of X absolute coordinate from end point to start point of cutting
Ζ	Z absolute coordinate of end point of cutting
W	Different value of Z absolute coordinate from end point to start point of cutting
R	Different value(R value) of X absolute coordinate from end point to start point of cutting. When
	the sign of R is not consistent with U, $R \le U/2$
F	Metric thread pitch is the same that of G32. After F value is executed, it is reserved and can be
	omitted
J	Travel in the short axis in thread run-out is same that of G32 and cannot be less than 0 without
	direction (automatically define its direction according to starting position of program), and it is
	modal parameter. If the short axis is X, its value is specified by radius
Κ	Travel in the long axis in thread run-out is same that of G32 without direction (automatically
	define its direction according to starting position of program), and it is modal parameter. If the
	long axis is X, its value is specified by radius
L	Multi threads: 1 \sim 99 and it is modal parameter. (The system defaults it is single thread when L is
	omitted)
Q	Shift angle of initial angle at the beginning of thread cutting. Its range is referred to G32

The system can machine one thread with many tool infeed in G92, but cannot do continuous two thread and end face thread. Definition of thread pitch in G92 is the same that of G32, and a pitch is defined that it is a moving distance of long axis(X in radius) when the spindle rotates one rotation.

Pitch of taper thread is defined that it is a moving distance of long axis(X in radius). When absolute value of Z coordinate difference between B point and C point is more than that of X (in radius), Z is long axis; and reversely, X is the long axis.

Fig. 2-60 Straight thread

Cycle process: straight thread as Fig.2-60 and taper thread as Fig.2-61.

- ① X traverses from start point to cutting start point;
- 2 Thread interpolates (linear interpolation) from the cutting start point to cutting end point;
- ③ X retracts the tool at the cutting feedrate (opposite direction to the above-mentioned ①), and return to the position which X absolute coordinate and the start point are the same;
- ④ Z rapidly traverses to return to the start point and the cycle is completed.
- Note 1: When J, K is omitted, the thread run-out is confirmed by No. 5130 (chamfering value) and No. 1531 (run-out angle), the run-out value of the long axis =No. 5130 setting value ×0.1×F, and F is the thread pitch. When No. 5131 (the run-out angle) is set to 0, the long axis and the short axis execute 45°run-out; when the setting value is positive integer, the run-out is done based on the run-out value and angle of the long axis(the system automatically counts the run-out value of the short axis):
- Note 2: Length of thread run-out is K in the long direction and is specified by No.5130 when J is omitted;
- Note 3: Length of thread run-out is J=K when K is omitted;
- Note 4: There is no thread run-out when J=0 or J=0, K=0;
- Note 5: Length of thread run-out is J=K when J≠0,K=0;
- Note 6: There is no thread run-out when J=0,K≠0;
- Note 7: After executing the feed hold in thread cutting, the system still executes the thread cutting. After returning the start point (one thread cutting cycle is completed), the system displays "Stop", and the program run pauses;
- Note 8: After executing single block in thread cutting, the program run stops after the system returns to start point(one thread cutting cycle is completed);
- Note 9: Thread cutting decelerates to stop when the system resets, emergently stops or its driver alarms;
- Note 10: The system alarms when the thread run-out length of the long axis is more than the thread machining length of the long axis;
- Note 11: The system alarms when the thread run-out length of the short axis is more than the thread machining length of the short axis;
- Note 12: The system automatically checks the spindle speed, and an alarm occurs when there is no speed signal which is feedback to the system or the speed is too slow or there is no speed arrival signal (No.3708.1=1: check the signal) spindle speed is not specified. The spindle speed cannot be checked during the machining.

Example:

Program.

Togram.	
O0012;	
M3 S300 G0 X150 Z50 T0101;	(Thread tool)
G0 X65 Z5;	(Rapid traverse)
G92 X58.7 Z-28 F3 J3 K1;	(Machine thread with 4 times cutting, the first tool infeed 1.3mm)
X57.7 J3 K1 ;	(The second tool infeed 1mm)
X57 J3 K1;	(The third tool infeed 0.7mm)
X56.9 J3 K1;	(The fourth tool infeed 0.1mm)
M30;	

2.20.4 Multiple Thread Cutting Cycle G76

Command function: Machining thread with specified depth of thread (total cutting depth) is completed by multiple roughing and finishing, if the defined angle of thread is not 0°, thread run-in path of roughing is from its top to bottom, and angle of neighboring thread teeth is the defined angle of thread. G76 can be used for machining the straight and taper thread with thread run-out path, which is contributed to thread cutting with single tool edge to reduce the wear of tool and to improve the precision of machining thread. But G76 cannot be used for machining the face thread. Machining path is as Fig.2-63.

 $\label{eq:command_format: G76 P_(m)(r)(a) Q_(\Delta dmin) R_(d);} \\$

Command explanations:

Start point	Position before block runs and behind blocks run, defined by A point.		
(end point)			
End point of thread	End point D of thread cutting defined by X(U) Z(W)The length axis direction of cutting end point is the one of thread cutting, and position after thread run-out of short axis direction		

Start point	Its absolute coordinates is the same that of A point and the different value of X				
of thread	absolute coordinates between C and D is i(thread taper with radius value). The tool				
	cannot reach C point in cutting when the defined angle of thread is not 0°				
Reference	Its absolute coordinates is the same that of A point and the different value of X				
position of	absolute coordinate between B and C is k(thread taper with radius value).The				
thread	cutting depth of thread at B point is 0 which is the reference position used for				
cutting depth	counting each thread cutting depth by the system				
	It is the cutting depth for each thread cutting cycle. It is the different value (radius				
Thread	value, without signs) of X absolute coordinate between B and intersection of reversal				
cutting	extension line for each thread cutting path and straight line BC. The cutting depth for				
depth	each roughing is $\sqrt{n} \times \triangle d$, n is the current roughing cycle times, $\triangle d$ is the thread				
	cutting depth of first roughing				
Travel of	Different value between the current thread current depth and the previous one: (\sqrt{n} -				
thread cutting	$\sqrt{n-1}$) × $\triangle d$				
End point of	It is the end position of radial (X) tool retraction after the thread cutting in each				
tool	thread roughing, finishing cycle is completed, is defined by E point				
retraction					
	Actual start thread cutting point in each thread roughing cycle and finishing cycle. It				
	is defined by (n is the cutting cycle times), B_n is the first thread roughing cut-in point,				
Thursd	B_1 is the last thread roughing cut-in point, B_e is the thread finishing cut-in point. B_n is				
	the X, Z displacement formula for B point:				
cut-in point	$tg \frac{a}{dt} = \frac{ Z replacement }{ Z }$				
	2 X replacement				
	a: thread angle				
X	X absolute coordinate of thread end point.				
U	Difference value of X absolute coordinate between thread end point and start point.				
Z	Z absolute coordinate of thread end point.				
w	Different value of Z absolute coordinate between thread end point and start point.				
	Times of thread finishing: 01 \sim 99 (unit: times) with 2-digit digital. It is valid after m				
	code value is executed, and the value of system parameter No.5142 is rewritten to				
P (m)	m. The value of system parameter No.5142 is regarded as finishing times when m is				
	finishing cutting travel is d and the following one is 0				
	Width of thread run-out $00 \sim 99$ (unit: 0.1×L,L is the thread pitch) with 2-digit digital. It				
	is valid after r code value is executed and the value of system parameter No.5130 is				
	rewritten to r. The value of system parameter No.5130 is the width of thread run-out				
P (r)	when r is not input. The thread run-out function can be applied to thread machining				
	without tool retraction groove and the width of thread run-out defined by system				
	parameter No.5130 is valid for G92, G76				

P (a)	Angle at taper of neighboring two tooth is 0~99, unit: degree(°) ,with 2-digit digital. It is valid after a code value is executed and the value of system parameter No.5143 is rewritten to a. The value of system parameter №05143 is regarded as angle of thread tooth. The actual angle of thread in defined by tool ones and so a should be the same as the tool angle					
Q (∆dmin)	Minimum cutting travel of thread roughing (radius value without sign symbols). When $(\sqrt{n} - \sqrt{n-1}) \times \Delta d < \Delta dmin$, $\Delta dmin$ is regarded as the cutting travel of current roughing, i.e. depth of current thread cutting is $(\sqrt{n-1} \times \Delta d + \Delta dmin)$. $\Delta dmin$ is applied because the cutting travel of roughing is undersize and the times of roughing are excessive, which is caused the cutting travel of thread roughing gradually decreases. After Q($\Delta dmin$) is executed, the code value $\Delta dmin$ is value and the value of system parameter No.5140 is rewritten to minimum cutting travel; when Q					
	$(\triangle dmin)$ is not input, the system takes No.5140 value as the least cutting value					
$\mathbf{R}(d)$ \mathbf{R}						
R(i)	It is thread taper and is the different value of X absolute coordinate between thread start point and end point (unit: mm, radius value). The system defaults i=0(straight thread) when i is not input					
P (k)	It is the depth of thread tooth and is also the total cutting depth of thread(radius value without sign symbols), and the system alarms when P(k) is not input					
Q (△d)	It is the first depth of thread cutting (radius value without sign symbols). The system alarms when $\triangle d$ is not input					
F	Pitch is defined to moving distance (radius value in X direction) of long axis when the spindle rotates one rev. Z is long when absolute value of coordinate difference between C point and D point in Z direction is more than that of X direction (radius value, be equal to absolute value of i); and vice versa					
J	When the thread run-out is executed, the movement range in the short axis direction is the same that of G32, must not be less than 0 without direction (the system automatically confirms the run-out direction according to the initial point of the program), is modal and its value is specified by radius					
К	K When the thread run-out is executed, the range in the long axis direction is the sam that of G32, is modal without direction, and the value is specified by radius					

Address	Incremental	Metric (mm) input	Inch (inch) input
	system		
Q(∆dmin	ISB system	0~99999999 (unit: 0.001mm)	0~99999999 (unit: 0.0001inch)

)	ISC system	0~99999999(unit: 0.0001mm)	0~99999999 (unit:
			0.00001inch)
R (d)	ISB system	0.001~99999.999 (mm)	0.0001 \sim 99999.9999 (inch)
	ISC system	0.0001~9999.9999 (mm)	0.00001 \sim 999.99999 (inch)
R (i)	ISB system	-99999.999~99999.999(mm)	-9999.9999~9999.9999 (inch)
	ISC system	-9999.9999~9999.9999(mm)	-999.99999~999.99999 (inch)
P(k)	ISB system	1~999999999 (unit: 0.001mm)	1~99999999 (unit: 0.0001inch)
	ISC system	1~99999999(unit: 0.0001mm)	1~99999999 (unit:
			0.00001inch)
Q(∆d)	ISB system	1~999999999 (unit: 0.001mm)	1~99999999 (unit: 0.0001inch)
	ISC system	1~99999999(unit: 0.0001mm)	1~99999999 (unit:
			0.00001inch)
F	ISB, ISC	0.01~500 (mm)	0.01~9.99 (inch)

Fig. 2-63

Cut-in method is shown in Fig. 2-64:

Fig. 2-64

Execution process:

- The tool rapidly traverses to B₁, and the thread cutting depth is △d. The tool only traverses in X direction when a=0; the tool traverses in X and Z direction and its direction is the same that of A→D when a≠0;
- (2) The tool cuts threads paralleling with C→D to the intersection of D→E (r≠0: thread run-out);
- (3) The tool rapidly traverses to E point in X direction;
- (4) The tool rapidly traverses to A point in Z direction and the single roughing cycle is completed;
- (5) The tool rapidly traverses again to tool infeed to B_n (is the roughing times), the cutting

depth is the bigger value of $(\sqrt{n} \times \triangle d)$, $(\sqrt{n-1} \times \triangle d + \triangle d_{min})$, and execute 2 if the cutting depth is less than(k-d); if the cutting depth is more than or equal to(k-d), the tool infeeds (k-d) to B_f, and then execute 6 to complete the last thread roughing;

- (6) The tool cuts threads paralleling with C→D to the intersection of D→E (r≠0: thread run-out);
- (7) X axis rapidly traverses to E point;
- (8) Z axis traverses to A point and the thread roughing cycle is completed to execute the finishing;
- (9) After the tool rapidly traverses to Be (the cutting depth is k and the cutting travel is d), execute the thread finishing, at last the tool returns to A point and so the thread finishing cycle is completed;
- (10) If the finishing cycle time is less than m, execute (9) to perform the finishing cycle, the thread cutting depth is k and the cutting travel is 0; if the finishing cycle times is equal to m, G76 compound thread machining cycle is completed.
- Note 1: When G76 is executed, after [FEED HOLD] key is pressed and the system executes this thread cutting cycle, the system enters pauses state and "Stop" appears in the status column;
- Note 2: The single block is executed during the course of thread cutting, the run stops after the system
 - returns to start point (one thread cutting cycle is completed);
- Note 3: The thread cutting speed stops when the system resets, emergently stops or the drive until alarms;

- Note 4: All or some addresses of G76 P (m) (r) (a) Q (\triangle dmin) R (d) are omitted, and omitted addresses runs according to the setting value;
- Note 5: m, r, a uses the same address P to be input one time. When m, r, a are all omitted, the system runs at the setting value of No.5142, No.5130 or No.5143; when P is with non regular value, the system takes the last two digits of P value as a value, and the last third and fourth digits as r value, and the left as m value;
- Note 6: Signs of U, W determines direction of A→C→D→E, R (i) determines that of C→D. Four kind of combination of U, W correspond to 4 kind of machining path;
- Note 7: When the set first thread cutting depth is more than the total cutting depth, one roughing is executed, and its cutting depth is equal to the total cutting depth of roughing;
- Note 8: When the least cutting amount or finishing allowance is more than thread tooth height in the course of thread roughing, an alarm occurs;
- Note 9: When the run-out length is more than the machining thread length of long axis, an alarm occurs;
- Note 10: The system automatically checks the spindle speed before machining, an alarm occurs when the spindle speed is not executed. The spindle speed cannot be checked in the course of machining;
- Note 11: The run-out format is the same that of G32 when there is J, K.

Example: Fig.2-65, thread M68×6.

Program: O0013; O0013; G50 X100 Z50 M3 S300;

G00 X80 Z10; G76 P020560 Q150 R0.1;

G76 X60.64 Z-62 P3680 Q1800 F6; G00 X100 Z50 ; M30; (Set workpiece coordinate system, start spindle and specify spindle speed)
(Rapid traverse to start point of machining)
(Finishing 2 times, chamfering width 3mm, tool angle 60°, min. cutting depth 0.15, finishing allowance 0.1)
(Tooth height 3.68, the first cutting depth 1.8)
(Return to start point of program)
(End of program)

2.21 Constant Surface Speed Control G96, Constant Rotational Speed Control G97

G96 command function: The constant surface speed control is valid, the cutting surface speed is defined (m/min) and the constant rotational speed control is cancelled.

Command format: G96 S<u>xxxx;</u>

Command explanation: G96 is modal G code. If the current modal is G96, G96 can not be input;

it is the cutting surface speed in Sxxxxx constant surface control.

G97 Command function: the constant surface speed control is cancelled, the constant rotational speed control is valid and the spindle speed is defined (r/min).

Command format: G97 Sxxxx;

Command explanation: G97 is modal G code. If the current modal is G97, G97 cannot be input; It is the spindle speed in Sxxxxx constant speed control(r/min).

Relative code: G50

Command function: define max. spindle speed limit (r/min) in the constant surface speed control(r/min).

Command format: G50 Sxxxx;

Command explanation: After the system is turned on, and the max. spindle speed is not specified, the system does not limit the spindle speed state. Max. spindle speed limit is valid for G96, and is invalid for G97;

S value set by G50 is modal and is value before the new max. speed is set;

Note: when G50 S0 is executed, the spindle speed is limited in 0 r/min (the spindle does not rotate) in the constant surface control;

Address	Incremental system	Metric (mm) input	Inch (inch)input
S (G96)	ISB, ISC	0~20000 m/min	0 \sim 2000 feet/min
S (G97)	ISB, ISC	0∼20000 r/min	0~20000 r/min

When the machine tool cuts it, the workpiece rotates based on the axes of spindle as the center line, the cutting point of tool cutting workpiece is a circle motion around the axes of spindle, and the instantaneous speed in the circle tangent direction is called the cutting surface speed (for short surface speed). There are different surface speed for the different workpiece and tool with different material.

When the spindle speed controlled by the analog voltage is valid, the constant surface control is valid. The spindle speed is changed along with the absolute value of X absolute coordinate of programming path in the constant speed control. If the absolute value of X absolute coordinate increases, the spindle speed reduces, and vice versa, which make the cutting surface speed as S code value. The constant speed control to cut the workpiece makes sure all smooth finish on the surface of workpiece with diameter changing.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

Surface speed=spindle speed× $|X| \times \pi \div 1000$ (m/min) Spindle speed: r/min

|X|: absolute value of X absolute coordinate value (diameter value) $\pi \approx 3.14$

Fig. 2-66

In G96, the spindle speed is changed along with the absolute value of programming path X absolute coordinate value in the course of cutting feed (interpolation), but it is not changed in G00 because there is no actual cutting and is counted based on the surface speed of end point in the program block.

In G96, Z coordinates axis of workpiece system must consist with the axes of spindle (rotary axis of workpiece), otherwise, there is different between the actual surface speed and the defined one.

When the constant surface speed is valid, G50 Sxxxxx can limit max. spindle speed (r/min). The actual spindle speed is the limit value of max. speed when the spindle speed counted by the surface speed and X coordinate value is more than the max. spindle speed set by G50 Sxxxxx. After the system powers on, max. spindle speed limit value is not defined and its function is invalid. Max. spindle speed limit value defined by G50 Sxxxxx is reserved before it is defined again and its function is valid in G96. Max. spindle speed defined by G50 Sxxxxx is invalid in G97 but its limit value is reserved.

- Note 1: G96, G97 are modal in the same group, and one of them is valid in the same time. G97 is initial word and is valid after the system is turned on.
- Note 2: In G96, S value executed is reserved in G97. there is no new S is executed and the S value in the last G96 state is recovered to the current valid surface speed after the system returns to G96 state, the system outputs the least surface speed in G96 when there is no saved value.
- Note 3: From G96 to G97, if none of S code (r/min) is executed in the program block in G97, the last spindle speed in G96 is taken as S code in G97, namely, the spindle speed is not changed at this time;
- Note 4: The constant surface speed control function is still valid when the machine is locked(X, Z do not move when the system executes X, Z motion codes);
- Note 5: In G96, when the spindle speed counted by the cutting surface speed is more than max. speed of current spindle gear, at this time, the spindle speed is limited to max. one of current spindle gear;
- Note 6: In thread cutting, To gain the precise thread machining, it should not be adopted with the constant surface speed control but the constant rotational speed (G97) in the course of thread cutting;
- Note 7: No.3031 sets the numerical digit permitted by S.

Note 8: X=0: the theory speed is infinite but the actual speed corresponds to 10V voltage because the maximum voltage of sent analog is 10V.

Example:

Program:

rogram:			
M3 G96 S300;	(Spindle rotates clockwise, the constant surface speed control is valid		
	and the surface speed is 300m/min)		
G0 X100 Z100;	(Rapid traverse to A point with spindle speed 955 r/min)		
G0 X50 Z0;	(Rapid traverse to B point with spindle speed 1910 r/min)		
G1 W-30 F200;	(Cut from B to C with spindle speed 1910 r/min)		
X80 W-20 F150;	(Cut from C to D with spindle speed 1910 r/min and surface speed		
	1194 r/min)		
G0 X100 Z100;	(Rapid retract to A point with spindle speed 955 r/min)		
M30;	(End of program, spindle stop and cooling OFF)		

2.22 Feedrate per Minute G98/G94, Feedrate per Rev G99/G95

G98 command function: G98 specifies the cutting feedrate is feedrate per minute, G98 is modal.

When the current is G98 modal, G98 cannot be input.

Command format: G98 Fxxxx;

G99 command function: G99 specifies the cutting feedrate is feedrate per rotation, G99is modal. When the current is G99 modal, G99 cannot be input.

Command format: G99 Fxxxx;

Command explanation:

When G99 F<u>xxxx</u> (B set of G code is G95) is executed, the actual cutting feedrate is gotten by multiplying the F code value (mm/r) to the current spindle speed(r/min). If the spindle speed varies, the actual feedrate changes too. If the spindle cutting feed amount per rev is specified by G99 FXXXX (B set of G code is G95), the even cutting texture on the surface of workpiece will be gotten. In G99 (B set of G code is G95)

state, a spindle encoder should be fixed on the machine tool to machine the workpiece.

F range in G98, G99 (B set of G code is G94, G95) is shown below:

Address	Incremental	Metric (mm) input	Inch (inch)input
	system		
F (G98)	ISB system	0. 001~60000 (mm/min)	0.00001~2400 (inch/min)
	ISC system	0.001~24000 (mm/min)	0.01 \sim 960 (inch/min)
F (G99)	ISB system	0.001~500 (mm/r)	0.0001~9.99 (inch/r)
	ISC system	0.00001~960 (mm/r)	0.0001~9.99 (inch/r)
F (G98)	ISB system	1~60000 (mm/min)	0.01~2400 (inch/min)
	ISC system	1~24000 (mm/min)	0.01~960 (inch/min)
F (G99)	ISB system	0.01~500 (mm/r)	0.01~9.99 (inch/r)
	ISC system	0.01~500 (mm/r)	0.01~9.99 (inch/r)

Reduction formula of feed between per rev and per min:

 $F_m = F_r \times S$

F_m: feed per min (mm/min);

F_r: feed per rev(mm/r) ;

S: spindle speed (r/min) .

F value is reserved after the system executes F code.

- Note 1: G98, G99 are the modal G codes in the same group and only one is valid. G98 is the initial state G code and the system defaults the modal can be set by No.3402 Bit4 (FPM) when the system turns on;
- Note 2: In G99 mode, there is the uneven cutting feed rate when the spindle speed is lower than 1 r/min; there is the follow error in the actual cutting feed rate when there is the swing in the spindle speed. To gain the high machining quality, it is recommended that the selected spindle speed should be not lower than min. speed of spindle servo or converter;
- Note 3: No.1422 set the upper of the cutting feedrate. When the actual cutting feedrate (the value is multiplied by the override) exceeds the specified upper limit, it is clamped to the upper limit value;
- Note 4: No. 1403 Bit0(MIF)can set the cutting speed unit per minute and the detailed is referred to II Operation;
- Note 5: When G99 instead of F code in G98 mode is executed, F is the previous modal value in G99. In a similar way, when G98 instead of F code in G99 mode is executed, F is the previous modal value in G98;
- Note 6: When the initial mode is G98/99, and G99/G98 is alone executed after power on, the system runs at the speed set by No. 1411.

2.23 Drilling/Boring Fixed Cycle Code

Many blocks completes one machining in the course of drilling. To simplify programming, GSK988TA/TB uses one drilling cycle G codes to complete a series of drilling machining. (C tool compensation vector in the course of drilling/boring will temporarily cancel, automatically recovers

after the code is completed.)

Fig.2-68

• Drilling fixed cycle G codes (included in	Group 10)
---	-----------

G code	Drilling axis	Drilling operation	Operation at bottom	Tool retraction	Function
G83	Z	Interval feed/ cutting feed	Pause	Rapid traverse	End drilling cycle
G87	Х	Interval feed / cutting feed	Pause	Rapid traverse	Side drilling cycle
G85	Z	Cutting feed	Pause	Cutting feed	End boring cycle
G89	Х	Cutting feed	Pause	Cutting feed	Side boring cycle
G80	1	/	/	/	Cancel drilling fixed cycle

Positioning axis and drilling axis

G confirms the drilling axis and the positioning axis is the others except for the drilling axis.

G code	Drilling axis	Positioning axis
G83, G85	Z	X and C
G87, G89	Х	Z and C

Note: C axis can be omitted.

• Fixed cycle is cancelled

G80 or G codes included in Group 01 can cancel the fixed cycle.

2.23.1 End drilling cycle G83 /side drilling cycle G87

Code definition:

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

X_ C_ or Z_ C_	It is hole position data, and valid in the specified block		
	The absolute value specifies the coordinates of hole bottom or the		
Z(W)_ or X(U)_	incremental value specifies the distance from Point R plane to the hole		
	bottom, which is value in the specified block.		
D	It is the distance from the initial plane to point R, is specified by radius		
к_	value with direction. Its unit and range are shown in the following table.		
D	It is pause time at the bottom. ISB system unit is 1ms, ISC system unit is		
Ρ_	0.1ms.		
	It is cutting amount every time and specified by radius value. Cutting		
Q_	amount, radius value every time, unit and range are shown in the		
	following table.		
F_	Cutting feedrate.		
K_ Program execution times (if necessary).			
M_	M code for clamping C axis (if necessary)		

	Incremental	Metric input (mm)	Inch input (inch)
	system		
Q	ISB system	0~99999999 (unit : 0.001mm)	0~99999999 (unit: 0.0001inch)
	ISC system	0~99999999(unit : 0.0001mm)	0~99999999 (unit : 0.00001inch)
R	ISB system	-99999.999~99999.999mm	-9999.9999 \sim 9999.9999 inch
	ISC system	-9999.9999~9999.9999 mm	-999.99999 \sim 999.99999 inch
Κ	ISB system	1 \sim 99 times	1 \sim 99 times
	ISC system	1 \sim 99 times	1 \sim 99 times

In G83/87, high speed deep hole drilling cycle, deep hole drilling cycle and standard drilling cycle can be selected by Q value (cutting amount every time) and RTR (NO.5101#2).

Lisk speed door hole drilling syste	Q value is specified (Q value is not zero)	and the	
High speed deep note aniling cycle	parameter RTR (NO.5101#2) ="0"		
Deep hale drilling evelo	Q value is specified (Q value is not zero)	and the	
Deep hole drilling cycle	parameter RTR (NO.5101#2) ="1"		
Standard drilling cycle	Q value is not specified or Q value is zero.		

G83, G87 are modal, remain valid once are specified until the fixed cycle is cancelled.

• High speed deep hole drilling cycle (Q value is specified (it is not zero) and RTR (NO.5101#2) ="0")

The system executes the intermittent cutting and chip removal with the specified tool retraction amount before entering the hole bottom, which is executed repetitively until the tool infeeds to the bottom, and then the tool retraction is performed, so the machining is completed. Command format and definition are referred to the previous description.

Execution process:

(1)The tool rapidly positions to the hole from starting point (the hole is determined by the hole position data at the initial plane);

(2)Rapidly position to point R;

(3)Cutting feed executes the cutting amount q specified ;

(4)Rapid tool retraction executes retraction amount d specified by No. 5114;

(5)Repeat the above Step 34 until the tool reaches the plane where the hole bottom is;

(6)Pause is executed in the time specified by P;

(7)Return rapidly to the plane where point R is, execute M(a+1) and pause the time specified by P2;

(8)Return rapidly to the initial plane;

(9)Drilling cycle ends.

Fig.2-69

• Deep hole drilling cycle (specify Q value and RTR (NO.5101#2) ="1")

the command format and definition are referred to the previous description.

Execution process:

(1)The tool rapidly positions to the hole from starting point (the hole is determined by the hole position data at the initial plane), and execute Ma;

(2)Rapidly position to point R;

(3)Cutting feed executes the cutting amount q specified by Q;

(4)Rapidly retract the tool to the plane where R point is;

(5)Rapidly retract the tool to the distance d from the previous machine plane (idle travel d of

deep hole drilling cycle specified by No.5115);

(6)Cutting feed the distance q+d ;

(7)Repeat the above steps (4)5)6 till the tool reaches the plane where the hole bottom is;

(8)Pause is executed in the time specified by P;

(9)Return rapidly to the plane where point R is execute M(a+1) and pause the time specified by P2;

(10)return rapidly to the initial plane;

(11)Drilling cycle ends.

Fig.2-70

• Standard drilling cycle (Q value is not specified)

Command format: G83 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_; or G87 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_;

Command explanation: the code definition is referred to the previous description.

Execution process:

(1)The tool rapidly positions to the hole from starting point (the hole is determined by the hole position data at the initial plane), and execute Ma;

(2)Rapidly position to point R;

(3)Cutting feed to the plane where the hole bottom is;

(4)Pause is executed in the time specified by P;

(5)Return rapidly to the plane where point R is, execute M(a+1) and pause the time specified by P2;

(6)Return rapidly to the initial plane;

(7)Drilling cycle ends.

Fig. 2-71

Program example:

Suppose the current system is ISB, the minimum input unit is 0.001mm and RTR is set to 1.

G98;	feed mode per minute
/14; activate C indexing (suppose)	
	activating C indexing)
M3 S1500;	the tool starts rotation

G0 X50 C0 Z0;	X, Z and C axis position to the starting point
G83 X100 Z-50 R-4 Q5000 P3000	starting point is X50 C0, hole position is
F200;	X100 C0,
	point R is X100 Z-4, hole position is X100
	Z-50,
	the cutting amount every time is 5mm, pause
	time is 3s.
	the block is for deep hole drilling according
	to Q value and RTR
C120;	position to C120 to drilling the 2 nd point
C240;	position to C240 to drilling the 3 rd point
G80 M05;	the fixed cycle is cancelled, the tool stops
	rotation
M15,	C axis indexing closes $\$ (suppose M15 is for
	closing C axis indexing)
M30;	end of program

2.23.2 End Boring CycleG85 / Side Boring Cycle G89

Command format: G85	X(U)_	C(H)_	Z(W)_	R_	Ρ_	F_	К_	M_;
G89	Z(W)_	C(H)_	X(U)_	R_	Ρ_	F_	К_	M_;

Code definition:

X_ C_or Z_ C_	It is the hole position data and is valid only in the specified block.	
Z(W)_or X(U)_	It specifies the coordinate value of hole bottom by using absolute	
	coordinate , or specifies the distance from point R plane to the hole	
	bottom by using incremental value, and it is valid in the specified block.	
R_	It is the distance from the initial plane to point R and is specified by	
	radius value with direction. Its unit and range is shown below.	
P_	Hole bottom pause time. Unit of ISB system is 1ms and ISC is 0.1ms.	
F_	Cutting feedrate.	
К_	Execution times of program (if neccessary).	
M_	M code for clamping C axis (if neccessary).	

Relevant command explanations are referred to those of G83/87.

Execution process:

- (1)The tool rapidly positions to the hole from starting point (the hole is determined by the hole position data at the initial plane), and execute Ma;
- (2)Rapidly position to point R;
- (3)Cutting feed to the plane where the hole bottom is at the speed specified by F;
- (4)Pause is executed in the time specified by P;
- (5)Return rapidly to the plane where point R is, execute M(a+1) and pause the time specified
 - by P2 (No.5149 is used to set override of boring retraction operation. When it is set to 0,

the system defaults the tool retracts at the speed of F value's twice) ;

- (6)Return rapidly to the initial plane;
- (7)Drilling cycle ends.

2.23.3 Cancelling Drilling/Boring G80

The code is used for cancel the drilling fixed cycle.

Command format: G80;

After G80 is executed, the hole position data, R and other drilling data are cancelled, and the mode of drilling cycle is also done.

2.23.4 Notes for Drilling/Boring Cycle

Note 1: When the reset or emergency stop is executed, the mode of drilling cycle remains. The user must pay

more attention to it when the program is started again. Note 2: The single block stops at end point of operation 1, operation 2 or operation 6.

Note 3: When drilling/boring cycle is executed, creating or cancelling tool compensation code is executed, the code is valid after the cycle ends.

2.24 Tapping Cycle Code

GSK988TA/TB CNC Turning System uses end tapping cycle (G84) and side tapping cycle (G88) to complete the tapping function. Tapping is divided into common tapping (flexible) and rigid tapping mode. In the common tapping mode, the spindle rotation and feed amount of tapping axis are controlled separately, their synchronous relationship is not controlled well. In the rigid tapping mode, the control of spindle motor is the same that of servo motor, the spindle rotating one circle corresponds to some axial feed amount of the spindle even if the spindle accelerates/decelerates. In the rigid tapping, the spindle can rapidly and exactly tap without using the floating chuck or variable screw tap (use it in the common tapping mode).

M29 (it can set other M code according to parameter or directly use G code to specify rigid mode without M code)specifies the rigid tapping cycle when programming.

When the rigid tapping is executed, the machine must have the corresponding conditions, i.e. the spindle uses the position control and is applied to Cs axis, otherwise, the system does not support the function. The function is applied to the machine with high configuration.

End tapping cycle (G84), side tapping cycle (G88), drilling fixed cycle G83/G87 and boring cycle G85/G89 are in the same Group 10. G80 or one code included in Group 01 can cancel the tapping fixed cycle. The system executes the normal operation after the drilling fixed cycle is cancelled. Clear point R and hole bottom (point X or Z) data and other tapping data (P, K, F) is also cleared.

Vector of C tool compensation during the course of tapping is temporarily cancelled, but automatically recovers after the code is executed.

2.24.1 Tapping Mode

Tapping cycle is divided into common mode and rigid tapping mode, and the follow method can specify the rigid tapping mode; when N0.5200#0=0 and M29 is not specified, the system executes the common tapping mode

Specify M29 S**** before G84 (G88) blocks;

```
M29 S ;
G84 X C R P F K (M );
X C ;
G80;
```

It is specified in the same block in G84 (G88) tapping blocks; M code for clamping C axis cannot

be specified in G84/G88 blocks in the mode.

G84/G88 is used for rigid tapping(Bit0 of No.5200 is set to 1); in the mode, G84/G88 is used for only the rigid tapping mode instead of the common tapping mode.

G84 X_C_Z_R_P_F_K_M_;

X_C_; G80;

M29 (the parameter sets other M code to specify it) is for rigid tapping, the system alarms when S is specified between M29 and G84/G88 blocks or the axis movement code is specified; the system alarms when M29 is specified repetitively in tapping cycle (M29 cannot be specified repetitively).

M29 Sxxxx codes rigid tapping mode. The corresponding switch is done after PLC receives M29 and the spindle stops rotation. The spindle output is equivalent to S0 output in M29.

2.24.2 End Rigid Tapping Cycle (G84) / Side Rigid Tapping Cycle (G88)

Command function: When the spindle is controlled in rigid mode (it is taken as the servo motor), the rigid tapping cycle is executed.

Command format: G84 X (U)_ C (H)_ Z (W)_ R_ Q_ P_ F_ K_ M_ ; or

G88 Z (W)_ C (H)_ X (U)_ R_ Q_ P_ F_ K_ M_ ;

X_ C_ or Z_ C_	It is the hole position data and is valid only in the specified block; the hole position data can specify other valid axes except for X, Z, C.
Z(W)_ or X(U)_	It specifies the coordinate value of hole bottom by using absolute
	coordinate, or specifies the distance from point R plane to the hole
	bottom by using incremental value, and it is valid in the specified
	block.
R_	It is the distance from the initial plane to point R and is specified by
	radius value with direction. Its unit and range is shown below.
P_	Hole bottom pause time. Unit of ISB system is 1ms and ISC is 0.1ms.
Q_	Cutting amount every time is specified by radius value. Its unit and
	range are shown below.
	When Q value is specified, G84/G88 selects the high speed deep hole
	rigid tapping cycle or deep hole rigid tapping cycle by PCP (No.
	5200#5). Q value is not specified or Q value is 0, the standard rigid
	tapping cycle is selected.
F	Cutting feedrate.
К_	Execution times of program (if neccessary).
M_	M code for clamping C axis (if neccessary).

The tapping feed axis specifies X or Z by G84/G88. The tapping axis specified by G84 is Z an the one specified by G88 is X. the relevant G signal confirms to select a spindle (it is relevant with the PLC).

	Incremental system	Metric input (mm)	Inch input(inch)
Q	ISB system	0~99999999 (unit: 0.001mm)	0~99999999 (unit: 0.0001inch)
	ISC system	0~99999999 (unit: 0.0001mm)	0~99999999 (unit: 0.00001inch)
R	ISB system	-99999.999~99999.999mm	-9999.9999 \sim 9999.9999 inch
	ISC system	-9999.9999 \sim 9999.9999 mm	-999.99999 \sim 999.99999 inch

The thread lead is determined by the cutting feedrate F(i.e., the tapping axis' feedrate) and the spindle speed S.

In per minute mode, thread lead =code cutting feedrate F /spindle speed.

In per rotation mode, thread lead =code feedrate F.

In rigid tapping mode, the system can select three kind of machining mode by Q value (cutting amount every time) and PCP (NO.5200#): Standard rigid tapping cycle, high-speed deep hole rigid tapping cycle, and deep hold rigid tapping cycle.

Standard rigid tapping cycle	Q value is not specified or Q value is 0		
High-speed deep hole rigid	Specify Q value (it is not zero)	and PCP (NO.5200#5) ="0"	
tapping cycle			
Deep hold rigid tapping cycle	Specify Q value (it is not zero)	and PCP (NO.5200#5) ="1"	

 \bullet Standard rigid tapping cycle (Q value is not specified or Q value is 0) .

Command format:

G84 X (U)_ C (H)_ Z (W)_ R_ P_ F_ K_ M_ ; G88 Z (W)_ C (H)_ X (U)_ R_ P_ F_ K_ M_ ;

Execution process:

(1)The tool rapidly positions to the hole from starting point (the hole is determined by the hole position data at the initial plane);

(2)Rapidly position to point R;

(3)The spindle starts rotation, and tapping axis is executed to the hole bottom plane at the speed specified by F, and the spindle stops when the axis reaches the hole bottom;

(4)Pause is executed in the time specified by P;

(5)The spindle starts rotation reversely and tapping axis retracts to the Point R plane at the speed specified by F, the spindle stops rotation at R point; execute M (a+1) and pause the time specified P2; (6)return rapidly to the initial plane;

(7)The standard tapping cycle ends.

 High speed deep hole rigid tapping cycle (Q value is specified (it is not zero) and PCP (NO.5200#5) ="0")

Before the tool enters the hole bottom, the intermittent tapping is executed and the chip removal is done with the specified tool retraction amount, which are done repetitive until the tool reaches the hole bottom, then the tool retracts and the machining ends.

 $\label{eq:command format: G84 X (U)_C (H)_Z (W)_R_Q_P_F_K_M_; or \\ G88 Z (W)_C (H)_X (U)_R_Q_P_F_K_M_; \\$

Execution processing:

(1)The tool rapidly traverses to the hole

bottom position from the start point (i.e., the start point confirmed by the hole position data in the initial plane);

(2)Rapidly position to point R;

(3)The spindle starts to rotate;

(4)The tapping axis feeds the cutting amount q specified by the cutting feedrate F; after the feed ends, the spindle stops rotation;

(5)The spindle rotates reversely, and the tapping axis executes the deep-hole rigid tapping's retraction amount d specified by NO.5213; the spindle stops rotation after the tool retraction ends;

(6)Repeat the above Step 3, 4, 5 till the tool reaches the hole bottom plane; the spindle stops rotation;

(7)The system dwells the time specified by P;

(8)The spindle rotates oppositely, and the tapping axis returns to point R plane at the special speed; (9)Rapidly return to the initial plane;

(10)The high-speed deep-hole rigid tapping cycle ends.

• **Deep hole rigid tapping cycle** (Q value is specified (it is not zero) and RTR (NO.5200#5) = "1") The cycle executes the deep hole rigid tapping operation.

Command format: G84 X (U)_ C (H)_ Z (W)_ R_ Q_ P_ F_ K_ M_ ; or

G88 Z (W)_ C (H)_ X (U)_ R_ Q_ P_ F_ K_ M_ ;

Execution processing:

(1)The tool rapidly traverses to the hole

bottom position from the start point (i.e., the start point confirmed by the hole position data in the initial plane);

(2)Rapidly position to point R;

(3)The spindle starts to rotate;

(4)The tapping axis feeds the cutting amount q specified by the cutting feedrate F; after the feed ends, the spindle stops rotation;

(5)The spindle rotates reversely, and after the tapping axis executes the tool retraction to point R plane, the spindle stops rotation

(6)The spindle starts rotation; the tapping axis executes the tool infeed to the distance d (the retraction amount d of the deep-hole rigid tapping specified by No. 5213) away from the previous machining plane;

(7)The tapping axis executes the cutting feed to the distance q+d;

(8)Repeat the above Step 5, 6, 7 till the tool reaches the hole bottom plane; the spindle stops rotation (9)The system dwells the time specified by P;

(10)The spindle rotates oppositely, and the tapping axis returns to point R plane at the special speed;

(11)Rapidly return to the initial plane;

(12)The high-speed deep-hole rigid tapping cycle ends.

Note 1: In the rigid tapping cycle, the tool retraction speed and the cut-in previous machining plane's speed are confirmed by the feedrate F (for the tapping axis, the federate is the specified F, used to differentiate G98 and G99; for the spindle, the feedrate is to specify the spindle speed) and the drawing override.

When DOV(NO.5200#4, the tool retraction is valid or not when the rigid tapping is performed) is set to 0, the drawing override is fixed to 100%.

When DOV(NO.5200#4) is set to 1, it is divided into two conditions:

(1) When OV3 (NO.5201#4, the address J specifies the spindle speed is valid or not during the tool retraction, which can confirm the drawing override). It is set to 0, the drawing override is set by NO.5211 (override value during the rigid tapping drawing, thereinto, OVU(NO.5201#3)

It is used to set the setting unit of rigid tapping's drawing override parameter. i.e., NO.5211 unit is 1% or 10%.

(2) When OV3 is set to 1, J address specifies the spindle speed during the tool retraction.

Override value (%) = 100% × spindle speed (J) in drawing/ spindle speed in tapping tool infeed(S) Besides, the override value exceeds the range 100%~2000%, it becomes 100%. When the spindle speed's address "J" during drawing is specified in rigid tapping mode, it is valid till the fixed tapping cycle is cancelled.

OVE(No.5202#6)="0":

Spindle speed code	DOV= "1"		DOV=	
Spindle speed code in drawing		OV3= "1"	OV3= "0"	"0"
Spindle speed code with "J"	Within 100~200%	Program code		
specifying drawing	Beyond 100~200%	100%	(No.5211)	100%
Spindle speed code without "J	(No.5211)			

OVE(No.5202#6)="1":

Spindle speed code i	DOV= "1"		DOV=	
Spindle speed code in drawing		OV3= "1"	OV3= "0"	"0"
Spindle speed code with "J"	Within 100~2000%	Program code		100%
specifying drawing	Beyond 100~2000%	100%	(No.5211)	
Spindle speed code without "J'	(No.5211)			

Note 2: P/Q is specified in the drilling blocks. When it is not specified in the drilling blocks, it is not taken as the modal data to store.

When Q0 is specified, the system does not execute the deep-hole rigid tapping operation.

- Note 3: The retraction amount d (No.5213) in the deep-hole tapping cycle should be less than the cutting amount q.
- Note 4: R code is the distance from the initial plane to R point, is expressed with a radius value, can be omitted. After it is omitted, the initial plane is the R plane.
- Note 5: G84/G88 can be used to the dry run. The feedrate F is the feedrate in the dry run.
- Note 6: For the feed pause, single block, when G84/G88 is at the operation 1, operation 2 and operation 6, "Feed pause" is pressed to decelerate to stop; when it is at the operation 3, 4 and 5 (during tapping), the movement does not stop. When the tool returns to the point R plane, the feed stops. When G84/G88 is the single block mode or the single block mode is open in the cycle, the single block stop is at the operation 1, 2, 6's end point (the operation3, 4, 5 and 6 are combined into one single block).

Note 7: When the tool radius compensation in tapping cycle is temporarily cancelled, it is recovered when the fixed cycle is cancelled.

- Note 8: When the fixed cycle in the rigid tapping is cancelled, the S value used in the rigid tapping is also cleared. (its state is the same with the specified S0). Namely, S used to specify the rigid tapping cannot be used in the program following the fixed cycle program cancelling the rigid tapping.
- Note 9: After the rigid tapping's fixed cycle is cancelled, S is specified again according to requirements.
- Note 10: N0.5209#0=0, i.e., "in the rigid tapping, the drilling axis is selected by the plane selection". In G84, when G17, G18, G19 is separately specified, the drilling axis is the basic axis X, Z, Y; in G88, when G17, G18, G19 is separately specified, the drilling axis is the basic axis Y, X, Z.
- Note 11: The left-hand thread rigid tapping is realized. When GSK988TA/TB G84/G88 rigid tapping's tool infeed is performed with default, the spindle rotates CW, when the rigid tapping's tool retraction is done, the spindle rotates CCW. In some special applications, when the tapping tool infeed is needed, the spindle rotates CCW, but when the tapping's tool retraction is performed, the spindle rotates CW. When the left-hand thread tapping is executed, GSK988TA/TB uses the rigid tapping's spindle rotation direction selection signal (RGROD, i.e., G61.2 in PLC address) to realize the left-hand thread tapping. Before G84/G88 rigid tapping is executed, the CNC checks the state of rigid tapping's spindle rotation direction direction selection signal to confirm the tapping axis' rotation direction. When RGROD signal is 0 and G84/G88 rigid tapping's tool infeed is executed, the spindle rotates CCW, which is the normal thread tapping; when RGROD signal is 1 and the tapping's tool infeed is performed, the spindle rotates CCW, which is the left-hand thread tapping. After the CNC is turned on, RGROD signal value is defaulted to 0.

During G84/G88 rigid tapping's execution process, RGROD state cannot be changed. After G80, RGROD state can be set again. Or it is set first before G84/G88 rigid tapping is executed. RGROD is added to the ladder, which can realize the left-hand thread rigid tapping.

Program example

Suppose the current system is ISB, the least input increment is 0.001mm

G98;			Feed per minute mode	
M29 S1	000;		Switch to the rigid tapping mode (very important), code the spindle speed 1000 rev/min. After the block is executed, the spindle does not start rotating.	
G0 X50	Z0;		X and Z position to the start point	
G84	Z-50	P3000	The start point is X50 Z0, the hole position is the same with the	
F2000;			start point, the pause time is 3 seconds, and executing F value and S value confirm the lead to 0. When Q value is not executed, it is a standard rigid tapping cycle.	
G80;			The fixed cycle is cancelled and the driving tool stops rotation	
M30;			End of program	

2.24.3 End Common Tapping Cycle G84/Side Common Tapping Cycle G88

When G84/G88 is a common tapping mode, the system uses the miscellaneous function to control the spindle Start/Stop: M03(the spindle rotation CW), M04(the spindle rotation CCW) and M05(the spindle stop); the CNC detects the spindle rotation by the spindle encoder and the tapping axis rotates along with the spindle. When the machine cannot use the rigid tapping function, the common tapping mode provides an economic tapping method.

When the system executes the common mode to tapping, the spindle must use a flexible chuck or the tool use a variable screw tap.

Command function: the spindle rotating one rotation makes Z move one pitch, which keeps consistent with the screw tap's pitch, forming a spiral grooving in the workpiece's inner hole to complete its thread machining one time. Note: it is different from the spindle tapping.

Command format: G84 X (U)_ C (H)_ Z (W)_ R_ P_ F_ K_ M_ ;

G88 Z (W)_ C (H)_ X (U)_ R_ P_ F_ K_ M_ ;

Command explanation:

X_ C_ or Z_ C_	It is the hole position data and is valid in the specified blocks; specify
	other axes which are not X, Z,C axis are valid at the hole position
	data.
Z(W)_ or X(U)_	Using an absolute value specifies the hole bottom's coordinate value
	or using an incremental value specifies the distance from point R
	plane to the hole bottom, and is valid in the specified blocks.
R_	Distance from the initial plane to point R, is presented with radius
	value with direction.
P_	Hole bottom pause time, ISB system time is 1ms, ISC system time is
	0.1ms.
F_	Cutting feedrate,
К_	Program execution times (if necessary).
M_	M code for C clamping (if necessary).

	Incremental system	Metric input (mm)	Inch input (inch)
R	ISB system	-99999.999~99999.999mm	-9999.9999 \sim 9999.9999 inch
	ISC system	-9999.9999~9999.9999 mm	-999.99999 \sim 999.99999 inch

The tapping feed axis specifies X or Z according to G84/G88. The tapping axis specified by G84 is Z and the tapping axis specified by G88 is X. The relevant G signal selects one spindle (relevant with the PLC).

The cutting feedrate F (i.e. the tapping axis' feedrate) and spindle speed S confirm the thread's lead.

In feed per minute mode, thread lead formular=cutting feedrate F /spindle speed S;

In feed per rotation mode, thread lead formular=cutting feedrate F.

Note: Before the spindle speed S specifies the common tapping, the CNC memorizes the spindle speed S's modal value. The CNC counts the thread lead according to S's modal value and F value specified in the code. When a common tapping is executed, the spindle override is influenced by N0.3708#6.

When G84/G88 is the rigid tapping cycle, Q code and the parameter PCP determine three kind of rigid tapping mode: standard rigid tapping cycle, high-speed deep-hole rigid tapping cycle and deep hole rigid tapping cycle. When G84/G88 is the common tapping cycle, there is only one mode below.

Before G84/G88, the spindle rotation (the operator confirms the spindle rotation CW or CCW according to the used screw tap) can be specified firstly, and the CNC can confirm the M code for the spindl's reverse rotation according to G84/G88's previous spindle rotation direction; when it is not specified, the spindle defaults the spindle rotation CW M03 when the system executes G84/G88 common tapping cycle.

Programming

Execution process:

- ① The tool rapidly positions to the hole position from the start point (i.e., the point confirmed by the hole position data in the initial plane);
- 2 Rapidly position to point R;
- ③ The spindle rotation M code outputting makes the spindle rotate (the spindle rotation before the tapping cycle is executed, here M code does not output);
- ④ The tapping axis rotates along with the spindle rotation to cut to the hole bottom plane at the speed specified by F; (when it is about to reach the programmed hole bottom's coordinate position, the spindle stops M05 output, it starts to decelerate to stop, and the tapping axis remains feed till the spindle completely stops rotation);
- ⑤ Dwell is executed in the time specified by P;
- ⑥ The M code for spindle's reverse rotation outputs (the spindle rotation direction is opposite to the tool infeed);
- ⑦ The tapping axis executes the tool retraction to point R plane at the speed specified by F;
- (8) The spindle stops M05 output and stops rotation;
- (9) The tool rapidly return to the initial plane;
- 10 The common tapping cycle ends.
- Note 1: The code is for the flexible tapping and the tapping axis' feed follows the spindle rotation. After the spindle stop signal M05 is valid at the hole bottom, the spindle decelerates to stop rotation, at the moment, Z still feeds along with the spindle rotation till the spindle exactly stops, so, the thread hole bottom position during the actual machining is higher or lower than the actual programmed position, and the concrete error length is determined by the spindle speed and the spindle brake equipment during tapping.

So, in order to safety, before executing G84/G88 tapping, the operator can move the slide to a safety position. G84/G88 is executed without cutting a workpiece (note: here is not the dry run

mode). The program can be modified according to the actual position of the spindle stop at the hole bottom in G84/G88 machining away from G84/G88 start point's coordinate value. So, remain enough hole depth before G84/G88 machining to execute G84/G88 machining.

Note 2: Before tapping cycle, the operator can specify the spindle rotation direction (i.e., code the spindle rotation CW/CCW in advance) in advance according to the screw tap. When the tool reaches point R to start tapping, at the moment, the CNC does not output the spindle rotation M code. After the tool reaches the hole bottom, the CNC automatically judges the corresponding M code when the spindle rotates CCW. After the tapping ends, the spindle stops rotation. When G84/G88 is still used in the next block, and the tool reaches point R, the CNC outputs again the M code for the spindle rotation to make the spindle rotation, at the moment, the spindle rotation direction is consistent with the specified in advance before tapping cycle.

When the spindle rotation is not specified before tapping, the CNC defaults the spindle rotation CW M03 during tapping. After the fixed cycle is cancelled, the spindle stops rotation. The spindle is started again when the machining should be continuously executed.

- Note 3: During the tapping, the tapping axis' move speed is determined by the spindle speed and pitch instead of the cutting feedrate override; the spindle override is influenced by N0.3708#6 during cutting.
- Note 4: When the single block or feed hold is executed, the system displays "Pause", and the tapping cycle does not stop till the tapping is completed and the tool returns to the start point.
- Note 5: When a reset, emergency stop or drive alarm occurs, the tapping cutting decelerates to stop. In the course, the spindle needs to decelerate to stop but Z exactly stops feed, so, the workpiece and screw tap maybe be damaged. So, G84/G88 should be not forcibly interrupted as possible during machining.
- Note 6: N0.5209#0=0, i.e., "in rigid tapping, the drilling axis executes the selection by the plane". The drilling axis is separate X, Z, Y for the separately specified G17, G18, G19 in G84; the drilling axis is separate Y, X, Z for the separately specified G17, G18, G19 in G88.
- Note 7: When R plane exceeds the initial plane and the hole bottom plane in the tapping blocks, an alarm occurs.

Program example: in the following figure, thread M10×2

			FIG. 2-78
G98;			Feed per minute mode
G0 X0 Z	2200;		X and Z position to the start point
M3 S80	0;		The spindle rotates CW and the spindle speed is 800 rev/min.
			After the block is execute, the spindle starts rotation
G84	Z160	P1000	The start point is X0 Z200, the hole position and the start point are
F1600;			the same, the dwell time is 1sec and the thread's lead is 2 according to F value and S value. When the rigid tapping mode is not specified in advance, G84 is the common tapping cycle. After the block is executed, the spindle stops rotation
N G80;			The fixed cycle is cancelled

M30;

End of program

2.25 Automatic Chamfering Function

Command function: Automatic chamfering function is defined to automatically insert chamfering

block or coring R block between machining blocks.

Blocks where the automatic chamfering can be inserted:

- Between linear interpolation and linear interpolation
- Between linear interpolation and arc interpolation
- Between arc interpolation and linear interpolation
- Between arc interpolation and arc interpolation

Command format: , C_; (chamfering)

, R_ ; (corning R)

Command explanation: one chamfering block or corning R block is inserted when the above

format is specified at the end of the specified linear interpolation (G01)

or arc interpolation (G02, G02) block.

Note: The system can continuously specify more than two chamfering blocks and corning R blocks.

1	Incremental	Metric input (mm)	Inch input (inch)
т	system		
C	ISB system	-99999.999~99999.999 mm	-9999.9999 \sim 9999.9999 inch
,0	ISC system	-9999.9999~9999.9999 mm	-999.99999 \sim 999.99999 inch
D	ISB system	-99999.999~99999.999 mm	-9999.9999 \sim 9999.9999 inch
,1X	ISC system	-9999.9999~9999.9999 mm	-999.99999 \sim 999.99999 inch

Chamfering: The numerical value following C specifies the distance from chamfering starting point to end point of the imaginary cornering intersection which is defined to the imaginary existing cornering when the chamfering is not executed.

Corning R: The numerical value following R specifies corning R radius.

M30

Chapter 2 G Commands

- Note 1: Even if the chamfering (, C) or corning R(,R) is specified in other blocks besides G01 and G02/G03 (except for G32, G34), it is ignored.
- Note 2: The block following chamfering or corning R for the chamfering or corning operation must be the one of G01 or G02/G03. The alarm "no movement after chamfering/corning R" occurs when other codes are specified.

But, only one G04 (dwell) block can be inserted between these blocks. The system pauses after the inserted chamfering/corning R block is executed.

Note 3: When the system exceeds the previous interpolation movement range caused by the inserted chamfering or corning R block, the alarm "executed movement being excessive small in the block following chamfering/corning R" occurs.

Fig. 2-81

Note 4: The chamfering or corning R block can be inserted into the movement codes included in the same plane.

When the plane selection (G17, G18, G19) in the next block after the chamfering or corning R is specified, the alarm occurs "the plane selection code is specified after chamfering or corning R".

Note 5: When two linear interpolation operations are executed and their angle difference is within ±1, the

movement of chamfering/coring R block is 0. When linear interpolation and circular interpolation operations are executed and angle difference of their tangent at the intersection point is within ± 1 , the movement of corning R block is 0. When two circular interpolation operations are executed and the angle difference of their circular tangent is within ± 1 , the movement of corning R block is 0.

- Note 6: When the chamfering or corning R block is specified in a single block, the operation runs until it reaches the end point of new chamfering/corning R block, the machine stops in feed hold mode at the end point.
- Note 7: The following G codes cannot be used with the chamfering/corning R code in the same block, as well as the blocks of chamfering/corning R of the defined continuous graph. G codes in Group 00 (except for G04)

Note 9: The last is valid when the many ",C" and ",R" are specified in the same block.

2.26 Function of Directly Inputting Graphic Dimension

Command function: the function of directly inputting graphic dimension can make the user directly use the linear angle, chamfering value and corning R value in the machining drawing to program.

Command format: can specify the plane in G17 plane(XY plane), G18 plane(XZ plane), G19 plane (ZY plane) . Taking example of G18 plane (XZ plane), the format changes when G17/G19 plane code is used: G17 plane: "Z"→"X", "X"→"Y"

G19 plane: "Z" \rightarrow "Y", "X" \rightarrow "Z"

Note 8: When ",C" or ",R" is executed in the thread cutting block, the alarm occurs "cannot code the chamfering or corning R in the current block".

	Command format	Command path
3	X2_ Z2_, C1_; X3_ Z3_; Or , A1_, C1_; X3_ Z3_, A2;	$\begin{array}{c} \mathbf{x} \\ (X3, Z3) \\ A2 \\ C1 \\ (X2, Z2) \\ (X1, Z1) \\ \mathbf{z} \end{array}$
4	X2_ Z2_ , R1_; X3_ Z3_; Or , A1_ , R1_; X3_ Z3_ , A2;	$\begin{array}{c} \mathbf{X} \\ (X3, Z3) \\ A2 \\ (X2, Z2) \\ (X1, Z1) \\ \mathbf{Z} \end{array}$
5	X2_ Z2_, C1_; X3_ Z3_, C2_; X4_ Z4_; Or , A1_, C1_; X3_ Z3_, A2, C2_; X4_ Z4_;	$\begin{array}{c} \begin{array}{c} C2 \\ (X3, Z3) \\ A2 \\ (X2, Z2) \\ C1 \\ (X1, Z1) \\ Z \end{array}$
6	X2_ Z2_ , R1_; X3_ Z3_ , R2_; X4_ Z4_; Or , A1_ , R1_; X3_ Z3_ , A2, R2_; X4_ Z4_;	(X4, Z4) $(X3, Z3)$ $R2$ $A2$ $(X2, Z2)$ $(X1, Z1)$ Z
7	X2_ Z2_ , R1_; X3_ Z3_ , C2_; X4_ Z4_; Or , A1_ , R1_; X3_ Z3_ , A2, C2_; X4_ Z4_;	$\begin{array}{c} \mathbf{X} \begin{array}{c} \mathbf{C}_{2} \\ (\mathbf{X}4, \ \mathbf{Z}4) \\ (\mathbf{X}2, \ \mathbf{Z}2) \\ (\mathbf{X}1, \ \mathbf{Z}1) \\ \mathbf{Z} \end{array}$

	Command format	Command path
8	X2_ Z2_, C1_; X3_ Z3_, R2_; X4_ Z4_; Or , A1_, C1_; X3_ Z3_, A2, R2_; X4_ Z4_;	(X4, Z4) $(X3, Z3)$ $R2$ $A2$ $C1$ $(X2, Z2)$ $A1$ $(X1, Z1)$ Z

A line is specified by specifying one or two of X, Z, A. When one is specified, the linear must be defined by a code in the next block.

When the angle, chamfer or corning R value of a line, it is specified by a code with the following comma (,) .

,A_ ,C_ ,R

Note: when end coordinates and linear angle of two axes are specified, the supplementary angle function is disabled. The codes in the above figure are programmed as follows:

X2_ Z2_ , A1_ C1_ ; (at this time, the supplementary angle A1 is invalid because of the end coordinate X2 Z2 has confirmed the path instead of supplementary angle to count).

• A supplementary angle specifying a angle

When DDP(No.3405#5) is set to "1", the supplementary angle can specify the angle.

Suppose that the supplementary angle is A', the actual code angle is A, so, the following relationship is true.

A = 180 - A'

Chapter 2 G Commands

Note 1: The code for directly inputting graphic dimension is valid in only Auto mode, and an alarm occurs in MDI, DNC mode.

Note 2: The following G codes cannot be used in the blocks which are the same those of directly inputting graphic dimension, also in the blocks which define continuous graph's directly inputting graphic dimension, as well as in the blocks which the directly inputting graphic dimension is executed in their mode.

G codes in group 00 (except for G04)

G codes except for G00, G01, G32 in group 01

G codes in group 10 (fixed cycle for drilling)

G codes in group 16 (plane selection)

G22, G23

Note 3: Cannot insert the chamfering C or corning R code in thread cutting blocks.

- Note 4: In single block run, when the system uses the code for directly inputting continuous graphic dimension, and the next block determines the previous block's end point, the machine does not stop at the end point of the previous block in single block stop mode rather than in feed hold mode.
- Note 5: In the following programs, angle tolerance of counting intersection point is ±1 degree. (the counted movement value is too big at intersection point.)

X_,A_; (an alarm occurs when the angle code A is specified to 0 degree or within 180±1 degree.)

Z_,A_;(an alarm occurs when the angle code A is specified to 90 degree or within 270±1 degree.)

- Note 6: When the intersection point is counted and angle difference between two lines is within ±1 degree, an alarm occurs.
- Note 7: The chamfering or corning R is ignored when angle difference of two lines is within ±1.

Note 8: The system must specify a coordinate code value (absolute code value) and an angle code value in a block which follows the block only having specified an angle code.

(Example)

N1 X_ ,A_ ,R_;

N2 ,A_;

N3 X_ Z_ ,A_;

(Besides the coordinate code value, must specify an angle code in N3, otherwise, an alarm occurs. Besides, the coordinate code value must not be an absolute code, otherwise, an alarm occurs.)

- Note 9: In tool nose radius compensation, blocks of the angle code for directly inputting graphic dimension have no movement blocks.
- Note 10: In continuous graphic dimension directly input codes, when there are 2 or more movement blocks between codes, an alarm occurs.
- Note 11: When CCR(No.3405#4) is set to "1", the block address A of G76 (multiple thread cutting cycle) is the tool nose angle code. Besides, when A or C is an axis name, A and C cannot be used in the angle codes and chamfering codes of graphic dimension directly input. Please use ,A_ and ,C_

(CCR(No.3405#4)="0")。

Note 12: In compound fixed cycle, although the program for graphic dimension directly input is used in the blocks between the serial number specified by P or Q, the last block specified by Q cannot be in the code for the graphic dimension directly input.

2.27 Macro Code

GSK988TA/TB provides the macro code which is similar to the high language, and can realize the variable assignment, and subtract operation, logic decision and conditional jump by user macro code, contributed to compiling part program for special workpiece, reduce the fussy counting and simplify the user program.

2.27.1 Variable

(1) variable use

The variable can specify the address value in the program. The variable value is assigned by the program code or is set directly by the keyboard. One program can use many variables which can be distinguished by their variable number.

• Variable expression

Use "#"+variable number to express;

Format: # i (i=200, 202, 203,);

Example: #205, #209, #225.

Besides, the expression can be used to specify the variable number. At the moment, the expression must be in the brackets.

Example: #[#20+#30/4]

• Variable reference

- 1. Use variable to permute the number following address.
 - Format: < address > +"# i" or < address > +"-# i" means to take the variable value or the negative value of value of the variable as the address value.

Example: F#203...#203=15: it is the same those of F15 functions;

Z-#210...#210=250: it is the same those of Z-250 functions;

G#230...#230=3: it is the same those of G3 functions.

When the variable value is used in program, the decimal point can be omitted. Example: #1=123: the actual value of #1 is 123.000.

When the variable value followed the axis code address has the decimal point, the data less than the least setting unit executes the rounding. For example: #1=1.23456; the axis least setting unit is 0.001, the tool to execute G00 X#1 positions to 1.235 position.

2. Use variable to permute variable number.

Format: "#"+[variable number]

Example: 5 uses #30 to execute the permutation in #5, is written to #[#30].

3. Refer the undefined variable.

When the variable is not defined, it becomes the "Null" variable. When the variable #0 is Null, it is only read instead of being written.

When the system refers to the undefined variable, it ignores the variable and the word. Example: when the variable #10 value is 0, the variable #!1 value is Null and the system executes G00 X#10 Y#11, the execution result is G00 X0, Y#11 to be ignored.

In course of operation, besides using null variable assignment, null variable value is the same that of 0 in other cases.

When #2=<Null> , #1=#2, #1=<Null>;

#1=#2*3, #1=0;

#1=#2+#2, #1=0;

Beside using the Null to assign, the variable value is 0 in other conditions.

When #2=< Null >, #1=#2, #1=<Null>;

#1=#2·3, #1=0; #1=#2+#2, #1=0;

<Null> in conditional expression is different with 0.

When #2=<Null>, #2 EQ #0, #2 NE 0, the condition is false.

When #2=0, #2 EQ #0, #2 NE 0, the condition is false.

(2) Variable Type

The variable is divided into the different variable types according to the variable number, their use and prosperity are different below:

Variable range	Variable type	Function
#0	Null variable	The variable is null and is not assigned.
#1~#33	Local variable	The local variable is used to transmit parameters (when the system uses G65, G66 to call subprograms every time, it initializes the local variable value by parameters), and store data (for example: store operation result) in the macro program. When the system is turned off, the local variable is initialized to be null. When the macro program is called, the argument assigns to the local.
#100~#199 #500~#999 #1000	Share variable	The share variable has the same meaning in the different macro program. When the system is turned off, the variable #100~#199 is initialized to be null, #500~#999 is saved and is not lost. The system variable is used to read all types of data when
	System variable	CNC runs.

(3) Variable range

- Note 1: The variable cannot be referred to address O and N. The system cannot use O#200, N#220 to execute the programming;
- Note 2: When the variable exceeds the max. code value defined by the address, it cannot be used; for example: #230 = 120: M#230 exceeds the max. code value;
- Note 3: The system cannot identify -0 and + 0. # 4 = 0: X # 4 is taken as X 0;
- Note 4: When the variable is used to the address data, the other except for the valid digit is rounded.
- Note 5: The number followed by the address can use <Formular> to replace. The system takes "Word address [<Formular>]" or word address-[<Formular>]" as a program, and take <Formular> value or its negative value as the code value of the address.
- Note 6: The decimal point which defines the variable in a program can be omitted. For example, #1=123 is defined, the actual value of #1 is 123.000;
- Note 7: The negative sign of variable value which changes the reference should be placed in the front of #, such as G00X-#1;
- Note 8:The variable #1 \sim #33, #100 \sim #199 are cleared out after they reset, which are set by NO.6001Bit7 (CLV) and Bit6 (CCV), and which cannot be executed in MDI mode;
- Note 9: When the variable value overflows, the code address referring to the variable is ignored.
- Note 10: NO.6000 Bit5 (SBM) sets whether the single block stop is valid in user macro program.
- Note 11: The number in expression (including brackets) can be omitted. For example, X[10] actual value is X10.000.

2.27.2 System Variable

The system variable is used to read and write NC internal data. For example, some system variable only read the tool offset value and current position data. The system variable is the base of the automatic control and general machining program development.

(1) Interface signal

The interface signal can program the exchange message between the machine controller and user macro programs, i.e. it completes the exchange with PLC by G, F signals and the interfaces with I/O are defined by PLC.

The input signal can be only read, and the output signal can be read and written.

System variable of interface signal				
Variable	Function	Corresponding G, F signals		
number				
	Read the 32-bit signal according to	Corresponding to G54.0 \sim G57.7 signal		
#1000#1031	its bit from PLC to user macro	state		
	program			
	Read 32-bit signal one time.	Corresponding to G54 \sim G57 signal		
#1032		state		

	Write 32-bit signal from macro	Corresponding to $F54.0 \sim F57.7$
	programs to PLC according its bit	signal state
#1100#1131	(its corresponding signal is 0 or 1	
	based on its macro variable value	
	which is rounded off.	
	Write 32-bit signal to PLC one	
"	time. It is specified in the range:	Corresponding to G54 \sim G57 signal
#1132	-99999999~99999999	state

(2) Tool compensation value

The system variable can read/write the tool compensation value. The system variable of the tool compensation storage area is $2001 \sim 2999$. The variable numbers divided exactly by 100 in the above range are illegal. The concrete ranges are referred to the following table.

	Х		Z		Radius		Tool
Compensation					comper	nsation	nose
number					value R	2	Т
	offset	wear	offset	wear	offset	wear	
1	2701	2001	2801	2101	2901	2201	2301
99	2799	2099	2899	2199	2999	2299	2399

Compensation	Y	
number	offset	offset
1	2401	2501
99	2499	2599

Note: Range of #2301-#2399: 0-9, and is rounded when it is with decimal point.

(3) Marco program alarm

Alarms and alarm messages specified by the user can exist in programs. The variable can only be written instead of being read.

Variable	Function		
#3000	When the system executes the assignment statement of #3000=XXX,		
	it stops the run and alarms.		
l	The alarm message only displays 31 characters (15 Chinese		
1	characters), and the system only displays the first 31 characters when		
1	there are more than it.		
	The value of the alarm number being #3000 adds 3000, the alarm		
	range is 3000 to 3200.		
1	When #3000 value is less than 0, the alarm number is 3000, when		
l	#3000 value is more than 200, the alarm number is 3200.		

Example: #3000=6; the tool has not found

When the system executes the block, it stops and alarms and the alarm number is 3006. The alarm message is "TOOL NOT FOUND", The system maybe alarm in advance because of the buffer exists.

The alarm message can use the small brackets. For example, #3000=6(TOOL NOT FOUND). When the small brackets and the semicolon are in the block, the latter specified message is valid, such as #3000=6(TOOL NOT FOUND); TOOL NOT FOUND, the displayed message is "TOOL NOT FOUND".

(4) Stop message

The program execution is interrupted and the system displays one message. i.e. the single stops after the system executes the block, and the system displays only one prompt. The variable is only be written instead of being read.

Variable	Function
#3006	When the system executes the assignment statement of #3006=1, it stops the run and displays only one prompt message. The alarm message only displays 26 characters (13 Chinese characters), and the system only displays the first 26 characters when there are more than it. The value of the alarm number being #3006 adds 3200, the prompt number range is 3201 to 3500. When #3006 value is less than 1, the alarm number is
	3201, when #3006 value is more than 300, the alarm number is 3500.

For example:

#3006=3; wait for run

When the system executes the block, it stops and displays one prompt and the prompt number is 3203. The prompt message is "WAITING FOR RUN". The format of the prompt message is the same that of description in the macro program alarm.

(5) Machine workpiece quantity

The required workpiece quantity (the target quantity) and machined workpiece quantity (completed quantity) are read and written

Required workpiece quantity and machined workpiece quantity		
Variable Function		
#3901	Machined workpiece quantity(completed quantity)	
#3902	3902 Required workpiece quantity(target quantity)	

When #3901 value is changed, the workpiece quantity displayed in POSITION window also changes.

When #3902 value is changed, No.6713 value also changes.

(6) Modal message

The previous modal message which is being processed can be read.

Variable	Function	
number		
#4001	G00, G01, G02, G03, G32, G34, G90, G92, G94	Group 1
#4002	G96, G97	Group 2

#4003		Group 3
#4004		Group 4
#4005	G98, G99	Group 5
#4006	G20, G21	Group 6
#4007	G40, G41, G42	Group 7
#4008	G25, G26	Group 8
#4009	G22, G23	Group 9
#4010	G80, G84,G88	Group 10
#4011		Group 11
#4012	G66, G67	Group 12
#4013		Group 13
#4014	G54, G55, G56, G57, G58, G59	Group 14
#4015		Group 15
#4016	G17, G18, G19	Group 16
#4022		Group 21
#4109	F code	Group 22
#4113	M code	
#4119	S code	
#4120	T code	

Example:

When the system executes #1=#4016, #1 value is 17, 18 or 19.

An alarm occurs when the reading/writing modal value is G code which cannot be used by the system.

(7) Current position

The position message is only read instead of being written.

Variable	Position signal	Coordinate system	Tool
number			compensation
			value
#5001 #5005	End point of block(absolute	Workpiece coordinate	Not including
#3001#3003	coordinate)	system	
#5021 #5025	Current position(machine	Machine coordinate	including
#3021#3023	coordinate)	system	
#5041#5045	Current position(relative	Workpiece coordinate	including
#3041#3043	coordinate)	system	
#5061 #5065	Skip signal position	Workpiece coordinate	including
#3001#3003		system	
#5081#5085	Tool length compensation		
#3001#3003	value		

The read is the position value after the last block execution. The unit digit from 1 to 5 of variable number corresponds the No. n axis.

(8) Compensation value of workpiece coordinate system

The workpiece zero offset value can be read and written.

Variable number	Function
#5201#5205	External zero offset value
#5221#5225	G54 workpiece zero offset value
#5241#5245	G55 workpiece zero offset value
#5261#5265	G56 workpiece zero offset value
#5281#5285	G57 workpiece zero offset value
#5301#5305	G58 workpiece zero offset value
#5321#5325	G59 workpiece zero offset value

The units digit from 1 to 5 of variable number corresponds the No. n axis.

(9) Note

The system variable is the state value of the system, and is buffered in advance when multi cycles are executed, so, the attained system variable is the value before the multi cycle code instead of the current value to avoid using the system variable in the cycle body of the multiple cycles.

2.27.3 Operation and Jump Code

(1) Operation code

Variables can execute all kinds of operations, and their operation command format is as follows.

#i=<Expression>

The right <expression> of an operation code is a compose of constant, a variable, function and operator.

GSK988TA/TB defines the following operations and logic codes:

Function	Format	Use
assignment	#i=#i·	Assignment statement assigns #j value to #i;
	$\pi_{I}-\pi_{J}$,	#i is Null when #j is Null;
addition	#i=#i+#k·	Addition. When #j value is Null, it it taken as 0.0 value,
	$\pi I - \pi J I \pi K$,	and the following functions are the same that of it;
Subtraction	#i=#j-#k;	Execute subtraction operation;
Multiplication	#i=#j*#k;	Execute division operation;
Division	#i=#j/#k;	Execute addition;
Sine	#i=SIN[#j];	Execute sine operation;
		Angle unit is degree;
Arc sine	#i=ASIN[#i]:	Execute arc sine operation;
		#j value is -1 \sim 1;
cosine	#i=COS[#i]:	Execute cosine operation ;
		Angle unit is degree

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 2 G Commands

Arc cosine		Execute arc cosine;
	#i=ACOS[#j];	#j value is -1 \sim 1
		Function range: 0°~180°.
Tangent		Execute tangent operation ;
	#i=TAN[#j];	Angle unit is degree
		#j value cannot be 90, 270
Arc tangent	#i=ATAN[[#i]/[#k]:	Specify the lengths of two sides, execute the arc tangent,
	#I=AIAN[#]]/[#K],	#j is opposite with "/" to partition;
Square root		Execute square root operation;
	#I=3QK I [#J],	#j cannot be less than zero
Absolute		Execute absolute value operation;
value	#I=ABS[#J], 	
Rounding	#i=ROUND[#j];	Execute rounding operation;
		In macro program, execute the rounding of one-digit of
		No., in NC statement, execute the rounding of the next
		digit of the least increment
FUP	#i= FUP [#j];	Floating UP integer ;
		In puls quantity, #i is more than or equal to $\#_j$, in the
		negative,#i is less than or equal to #j
FIX	#i= FIX [#j];	Floating FIX integer;
		In puls quantity, #i is less than or equal to #j, in the
		negative,#i is more than or equal to #j
Natural	#i=LN[#j];	Execute natural logarithm ;
logarithm		The system alarms when #j is zero or less than zero
Exponential	#i=EXP[#j];	Execute #j exponent ;
function		#j value cannot be more than 80
OR	#i=#j OR #k;	Execute the binary logic operation of input data
XOR	#i=#j XOR #k;	#j, #k cannot be less than zero
AND		When there are the decimal points in #j, #k, the decimal
	#I=#J AND #K,	parts are rounded
BCD to BIN		Converse the decimal data into the binary;
	#i=BIN[#j];	The system alarms for the data which cannot the
		converse
BIN to BCD	#i=BCD[#j];	Converse the binary into the decimal

Command explanation:

(1) operation sequence:

Priority	Operator and function
5	" [" , "]"
4	"#"
3	"SIN", "SI", "ASIN", "AS", "COS", "CO", "ACOS", "AC", "TAN", "TA", "ATAN", "AT", "SQRT", "SQ", "ABS", "AB", "ROUND", "RO", "FIX", "FI", "FUP", "FU", "LN", "EXP", "EX", "BIN", "BI", "BCD", "BC",

1	2	"AND", "AN", "*", "/",
	1	"OR", "XOR", "XO","+", "-",

- (2) EXP function input value cannot be more than 80, otherwise, an alarm occurs;
- (3) "/" character in <expression>(in the right of assignment"=" or in the bracket []) is taken as the division operator instead of optional block skip code;
- (4) A bracket "[]" is used to 5 levels, including the bracket used in the function. An alarm occurs when it exceeds 5 levels.
- (5) The angle units of the triangle function SIN, COS, ASIN, ACOS, TAN and ATAN are degrees, for example: 90°30′ is 90.5 degree;
- (6) #i=ASIN[#j] value range:
 When NO.6004 No. 0-digit NAT is set to 0: 90°∼270°
 When NO.6004 No. 0-digit NAT is set to 1: -90°∼90°
 When #j exceeds between -1 and 1, the system alarms and #j can be a constant.
- (7) #i=ACOS[#j] range: $0^{\circ} \sim 180^{\circ}$. When #j exceeds between -1 and 1, the system alarms and #j can be a constant.
- (8) In #i= ATAN[#j]/[#k], ATAN #j and #k are the weight length of two right-angle sides as follows:

When NO.6004 No. 0-digit NAT is set to 0: $0^{\circ} \sim 360^{\circ}$ Example: when #1=ATAN[-1]/[-1] is specified, #1=225°. When NO.6004 No. 0-digit NAT is set to 1: -180° \sim 180° Example: when #1=ATAN[-1]/[-1] is specified,#1=-135° #j, #K can be the constant.

In division or TAN[90], the division is specified to 0, P/S alarms;

(9) The function ROUND is used to NC code or macro statement, which rounds the data with the decimal point. It is used to NC statement, which rounds according to the least setting unit; when it is used to the macro statement, which rounds No. 1-digit decimal point;

```
In executing #2=ROUND[#3], when #3=1.2345, the variable #2 value is 1.
```

In ISB increment metric input, #2=1.2345, #3=2.5456:

G00 X#2; the tool moves to 1.234mm

G00 X#3; the tool moves to 2.545mm

(10) For FUP, FIX, when the absolute value of the integer after execution is more than that of the original, it is FUP; when it is less than that, it is FIX.

```
When #2=1.2, #3=-1.2
```

In executing #4=FUP[#2], 2.0 is assigned to #4

In executing #4=FIX[#2], 1.0 is assigned to #4

In executing #4=FUP[#3], -2.0 is assigned to #4

In executing #4=FUP[#3], -1.0 is assigned to #4

(11) Logic operation OR, XOR, AND firstly are conversed the decimal into the binary, and are executed in the binary by one-digit to one digit.
 Pange: 0~999999999 when it has the decimal point, it is ignored.

Range: $0 \sim 99999999$, when it has the decimal point, it is ignored.

Example:

#101=10 (the binary is: 00001010)

#102=12 (the binary is: 00001100)

#103=#101 OR #102 (or the operation result is : 00001110)

The window display result of macro variable is #101=10.000000 #102=12.000000 # 103=14.000000

(12) The function BIN converses the decimal into the binary which is displayed in decimal system.

The function converses the binary number displayed in decimal system into 8421 format BCD. The system cannot display and alarms when some digit in BCD code after conversion exceeds 9.

Example 1:

#101=37 (BCD 37 corresponds to the binary : 00110111)

#102=BCD[#101]

Macro variable window display #102=55.000000

(2) Transfer and cycle codes

The transfer and the repetition codes can change the control flow, and there are three kind of transfer and repetition operation: the unconditional transfer GOTO, the conditional transfer IF...GOTO, IF...THEN and WHILE DO repetition.

Command format:

GOTO n;

Command function:

Skip to the line number n without condition;

Command format:

IF <Logical expression> THEN <expression>;

Command function:

When the logical expression is valid, the system executes one following THEN, otherwise, it executes the next block.

Command format:

IF < Logical expression > GOTOn;

Command function:

When the logical expression is valid, the system skips the block with the line number n to execute, otherwise, it executes the next block;

Command format:

```
WHILE < Logical expression > DOn;
```

```
.....;
```

ENDn

Command function:

When the logical expression is valid, the system executes the block between Do and END, otherwise, its execute the block following END. The numerical value n following DO and END is used to specify the execute range label of the specified program, n value is 1, 2, 3. The system alarms when n is not 1, 2, 3.

IF, WHILE logical operation character rules are as follows:

Operator	substitute	character definition
EQ	==	(=)
NE	<>	(≠)

GT	>	(>)
GE	>=	(≥)
LT	<	(<)
LE	<=	(≤)

- Note 1: When the system transfers to the block with the serial number n and specifies the another exceeding the serial number range between 1 and 99999, P/S alarms, and the expression can specify the serial number;
- Note 2: The conditional expression must include the operator which is inserted in the middle of two variables

or the variable and the constant and is closed by the bracket[]. The expression can be replaced by the variable;

- Note 3: The number following D0 and the one following END specify the execution range label of the specified program, and the label value is 1, 2, 3. The system alarms when n is not 1, 2, 3;
- Note 4: The label (1-3) in the repetition DO—END can be used many times, but P/S alarms when there is the cross repetition (superposition in DO range);
- Note 5: When the system specifies D0 instead of WHILE statement, it creates the limitless repetition between D0 and END;
- Note 6: In using EQ, NE logical operation expression, <Null> and zero have the different result. <Null> is taken as the zero in +, -, * conditional expression;
- Note 7: The macro program statement cannot be used with NC statement together, and the macro program statement definition is as follows:
 - Block including arithmetic or logical operation(=);
 - Block including the control statement (such as TOTO, DO, END);

Block including macro program call code (such as G65, G66, G67 or other G codes, M code call macro program) ;

Any blocks except for macro program statements are NC statements;

- Note 8: Any blocks except for macro program states are NC statements.
- Note 9: The system can use the substitution character which is easily understood to replace the operator. '>', '<' can be edit in PC instead of on MDI keyboard and are uploaded into the system;
- Note 10: When macro statement needs a line number, the line number must be compiled in the front the statement;
- Note 11: In MDI mode, the system cannot execute the skip statement, otherwise, it alarms.

Example:

(1) GOTO example

(2) IF <Logical expression> THEN <expression> example

IF[#2 EQ #3] THEN #4=0;

When #2 value is same that of #3, #4 value is 0.

(3) WHILE <Logical expression> DOn;...; ENDn example

The condition is not satisfied

END n;

2.27.4 Macro Program Statement and NC Statement

The following blocks are macro program statements:

Including arithmetic or logical operation (=);

Including control statement(such as GOTO, DO, END);

Including macro program call code (G65, G66, G67).

Any NC blocks except for macro program statement are NC statements.

In Single Block mode, when No.6000 Bit5 (SBM) is set to 0, the system directly skips the macro program statement and the machine does not stop, but it is set to 1, the system stops run and enters the stop state.

One block cannot have the macro program statement and NC statement simultaneously.

2.27.5 Macro Program Call

(1) Non-modal call of macro program G65

Command format: G65 P _ L _ $\langle argument | ist \rangle$;

Command function: The system calls macro program L times specified by P and transfers the argument to the called macro program.

Command explanations: P: specify the macro program to be called;

L: times of calling the macro program, and its default is 1 and its range is 1 \sim 9999;

Argument list: data transferred to macro programs.

Argument specification:

Two types of argument specification are available. Argument specification I uses letters other than G, L, O, N and P once each. Argument specification II uses A, B and C once each and also uses Ii, Ji and Ki. i is $1\sim10$, and the types of argument specification are determined automatically according to the letters used.

Argument specification I

Address	Variable No.	Address	Variable No.	Address	Variable No.
А	#1	I	#4	Т	#20
В	#2	J	#5	U	#21
С	#3	К	#6	V	#22
D	#7	М	#13	W	#23
E	#8	Q	#17	Х	#24
F	#9	R	#18	Y	#25
Н	#11	S	#19	Z	#26

Addresses G, L, N, O and P cannot be used in arguments;

Addresses that need not be specified can be omitted and local variables corresponding to an omitted address are set to null;

Addresses do not need to be specified alphabetically. They conform to word address format, but I, J , K are specified according to the letter order;

Example: B_A_D_...J_K_ Correct

B_A_D_...K_J_ Incorrect

Argument specification II uses A, B and C once each and uses I, J, and K up to ten times. Argument specification II is used to pass values such as three-dimensional coordinates as arguments.

Argument specification II

Address	Argument No.	Address	Argument No.	Address	Argument No.
А	#1	K3	#12	J7	#23
В	#2	14	#13	K7	#24
С	#3	J4	#14	18	#25
1	#4	K4	#15	J8	#26
JI	#5	15	#16	K8	#27
K1	#6	J5	#17	19	#28
12	#7	K5	#18	J9	#29
J2	#8	16	#19	K9	#30
K2	#9	J6	#20	110	#31
13	#10	K6	#21	J10	#32
J3	#11	17	#22	K10	#33

Note 1: G65 must be specified before any argument;

- Note 2: After G65, specify at address P and L. when P or L is repeated and No.3403 Bit6 (AD2) is set 0, the specification later takes precedence, otherwise, the system alarms;
- Note 3: Subscripts of I, J, K in the argument specification II for indicating the order of argument specification are not written in the actual program;
- Note 4: The CNC internally identifies argument specification I and argument specification II. If a mixture of argument specification I and argument specification II is specified, the type of argument specification specified later takes precedence;
- Note 5: Calls can be nested to a depth of four levels including simple calls G65 and modal calls G66. This does not include subprogram call M98.
- Note 6: Whether the units used for argument without a decimal point correspond to the least input increment of each address is related to the parameter DPI (No.3401#0);
- Note 7: G65, G66 cannot be in the same block with NC code, otherwise, the system alarms;
- Note 8: In macro program nesting call, the local variables from level 0 to 4 are provided for nesting. When the level of the main program is 0, each time a macro is call, the local variable level is incremented by one. The values of the local variables at the previous level are saved in the CNC. When M99 is executed in a macro program, control returns to the calling program. At that time, the values of the local variables saved when the macro was called are restored.

Note 9: The line number of the code line of the macro statement must be home, otherwise, the system alarms.

Macro program nesting example

Fig.2-82 Nesting macro program

(2) Modal call of macro program G66, G67

Command function: set the modal message of the specified macro program L times for calling

P, send the argument to the called macro program.

Command format: G66 P _ L _ $\langle argument list \rangle$;

.....;

G67;

Command explanation:

G66: modal macro program call needs one line to be specified;

G67: call macro program call mode;

P: specify many called macro programs;

- L: times for calling the macro program. It is default to 1, its range is 1-9999;
- Argument list: data sending to macro program is referred to the explanations of G65.
- Note 1: In G66, call a movement code in the same CNC file or M98, G65 or G66 cannot be executed in non-movement blocks;
- Note 2: G66 is specified before P_, L_ and argument, and the use methods of P, L, the argument are the same those of G65;
- Note 3: G66 can't call a macro program in G66 blocks but it can execute the call only when its mode is called; without movement codes, it cannot call a macro program in miscellaneous function or dry run mode;
- Note 4: The local variable (argument) is specified only in G66 block, and the system does not set it again when each modal call is executed;
- Note 5: Cannot specify the macro call code in MDI mode;
- Note 6: When the reset is executed by setting the parameter, whether the common variables of the local variables from #1 to #33 and from #100 to #149 are cleared to the Null value.
- Note 7: The system clears the call state of all user macro programs and subprograms and DO state, and returns to the main program;
- Note 8: In executing the macro program statement, when the feed pause is valid, the machine stops after the macro statement is executed, and the machine also stops when the system resets or alarms.

Application example:

(1) G65 example

(2) G66, G67 example

```
Program: 00002
```

G00 X100 Z50;

G66 P0100 L2 A2 B20 C20 I30 J20 K20; execute the block instead of call, writing local variables, but only change the mode

G01 X80 Z50; after executing the block, call No.P0100 program two times(refresh the local variable according to the argument)

G0 U0 W0; have no subprograms to be called

G01 U1;after executing the block, call No.P0100 program two times(refresh the
local variable according to the argument)G67:G66 mode call is cancelled

G01 X20 Z50; after executing the block, the system does not call No.P0100 program

M30;

2.28 Slant Axis Control

The slant axis control function is defined that the slant axis relative to a quadrature axis is installed with exceeding 90°, which makes each axis' movement amount be controlled according to a slant angle.

Distribute any axes to one group of slant axis and quadrature axis by a parameter.

The actual movement is controlled according to a slant angle, but, a program is compiled according to a vertical intersection between a slant axis and quadrature axis. Here, the used coordinate system is called a program coordinate system. (the following contents sometimes changes the program coordinate system into a cartesian coordinate system, but the actual movement coordinate system is called a slant coordinate system or a machine coordinate system.)

Fig. 2-83

• Each axis' movement formular

When the slant axis' movement amount is Ya, and the quadrature axis' movement is Xa, the system realizes the control by the following expressions.

The slant axis' calculation formular:

$$Ya = \frac{Yp}{\cos\theta}$$

the quadrature axis' calculation formular: $Xa = Xp - C \times Yp \times \tan \theta$

Note: The coefficient C becomes 2 when the quadrature axis is specified with a diameter, and becomes 1 when the quadrature axis is specified with a radius.

Relationship between a slant axis and a quadrature axis is shown in Fig. 2-84:

Fig. 2-84

The absolute position and relative position is expressed by the programmed cartesian coordinate system, and the machine position is expressed by the actual movement's machine coordinates according to the slant axis.

Feedrate of each axis

When Y is a slant axis and X is a quadrature axis, to get the tangent direction's speed Fp, the controlled axis' feedrate is shown below:

Y's actual speed:
$$Fay = \frac{Fp}{\cos\theta}$$

Fa: actual speed, Fp: programmed speed

X's actual speed: $Fax = Fp - Fp \times \tan \theta$

Position coordinate display

The absolute position display and relative position display: is expressed by the programmed Cartesian coordinate system.

Machine position display: is expressed by the actual movement's machine coordinates according to the slant axis.

Usage

The slant axis and quadrature axis used to control a slant are set in No.8211 and No.8212 in advance. But, when some parameter is set to 0, it is set to the same serial number or beyond the controlled axis quantity, selecting a slant axis and a quadrature axis is shown in the following table.

Slant axis	3 reference axes' X (the axis of No.1022 is set to 1)
Quadrature axis	3 reference axes' Z (the axis of No.1022 is set to 3)

- 1) AAC (No.8200#0) makes the slant axis control valid/invalid. When it is valid, the system executes the control according to the slant angel parameter (NO.8210).
- 2) When the manual reference point return operation along the slant axis is executed, AZR (No.8200#2) selects whether to make the quadrature axis move by the slant axis.
- 3) Setting the invalid control signal NOZAGC (G63.5) of quadrature axis' slant axis to "1" makes the slant axis control function is valid to only the slant axis. At the moment, the slant axis' movement code can be transformed into slant coordinates, but the quadrature axis is not influenced by a slant axis' movement code. The signal is used when each axis individually moves.

2.29 G Code System B

GSK988TA/B has two set of G code, including G code system A and G cod system B. The previous described G codes use G code system A. Here, introduce their differences between programs and uses.

2.29.1 Differences of G Codes

2 set of G code system are referred to Table 2-23, Section 2.26.1. Their differences are described in Table 2-23.

G co	odes	Group		Function		Classification
А	В	Cicup				
G50	G92	00	Workpiece	coordinate	system	Non mode

Table 2-23

			setting or max. spindle speed setting		
G90	G77		Axial cutting cycle		
G92	G78	01	Thread cutting cycle	Mode	
G94	G79		Radial cutting cycle		
*G98	*G94	05	Feed per minute	Mode	
G99	G95	05	Feed per rotation	MODE	
	*G90	03	Absolute code	Mode	
	G91	05	Incremental code	wode	
—	*G98	11	Fixed cycle return to initial plane	Mode	
—	G99		Fixed cycle return to point R plane	WOUL	

2.29.2 Absolute Code and Incremental Code G90, G91

Command function: G90 and G91 determine to use the absolute code or incremental code. G90 is an absolute code and G91 is an incremental code.

Command format:

Absolute code: G90 IP_;

Absolute code: G91 IP_;

Command explanation: main differences between A set of G code system and A set of G code system are to use the incremental code and absolute code. The A set of G code system using U, V, W and H separately means X, Y, Z, C's incremental code, but B set of G code system using G90/G91 means the currently used incremental value or absolute code value.

Example:

In A system, block: G01 X100 W100 In B system, block: G90 G01 X100 G91 Z100

2.29.3 Cycle Code Processing

In B set of G code system, U, W set in G71~G76 blocks are taken as a parameter set by a cycle code to use, and is not taken as a axis movement code, even if U,W is set to a parallel axis.

The position code set in the cycle code is only specified by a corresponding axis code, and using G90/G91 means the current programmed position is set by an absolute vaue or incremental value.

2.29.4 Drilling Fixed Cycle's Return Operation G98, G99

In A set of G code system, the tool returns to the initial plane from the hole bottom. In B or C set of G code, specifying G98 can make the tool return to the initial plane from the hole bottom and specifying G99 can make the tool return to point R plane from the hole bottom. The following figure specifies G98, G99 operations. Generally, the initial drilling uses G99 and the last uses G98.

Chapter 3 MSTF Codes

Chapter 3 MSTF Codes

3.1 M (Miscellaneous Function)

M code consists of code address M and its following digits (the digit is set by No.3030), used for controlling the flow of executed program or outputting M codes to PLC .

There is one valid M code in one block. There are most specified 3 M codes in one block(set by NO.3404 Bit 7 (M3B)). The corresponding relationship between M codes and their functions are determined by the machine manufacturer. CNC sends M code signal and one strobe signal to PLC in executing M codes.

Except for M98, M198, M99, all M codes are executed in PLC. Their functions, meanings, control sequence and logic are referred to the machine manufacture's manual books.

3.1.1 End of Program M02

Command format: M02 or M2

Command function: In Auto mode, after M02 is executed and other codes of current block are executed, the automatic run stops. Whether the cursor returns the home of program is set by No.3404 Bit5 (M02). The cursor must return to the start of program when the program is executed again.

Except for the above-mentioned function executed by NC, M02 function is also defined by PLC ladder diagram as follows: current output of CNC is reserved after M02 is executed.

3.1.2 End of Program Run M30

Command format: M30

Command function: In Auto mode, after other codes of current block are executed in M30, the automatic run stops, the amount of workpiece is added 1, the tool nose radius compensation is cancelled and the cursor returns to the start of program (whether the cursor return to the start of program or not is defined by parameters).

Besides the above-mentioned function executed by NC, M30 function is also defined by PLC ladder diagram as follows: the system closes M03, M04 or M08 signal output and outputs M05 signal after M30 is executed.

3.1.3 Program Stop M00

Command format: M00 or M0

Command function: the system stops the automatic run after M00 block is executed, which is

same that of the single block pausing to save the previous modal message, i.e. which is equal to the program pause function. Press the CYCLE START key on the operation panel to execute the follow block and the CNC continuously automatically runs.

When M00 are other G code are in the same block, the system executes the code in the block, then M00, and last stops running.

3.1.4 Optional Stop M01

Command format: M01 or M1

Command function: after the block containing M01 is executed, the system stops the automatic run and the single block stopping signal lights. M01 is valid when the OPTIONAL STOP on the machine operation panel is pressed.

3.1.5 Subprogram Call M98

Command function: In Auto mode, after other codes in the current block are executed in M98, CNC calls subprograms specified by P.

When the subprogram is called one time, $\circ \circ \circ \circ$ can be omitted in inputting the number" $\circ \circ \circ \circ \Box \Box \Box \Box$ " behind P, at the same time, the leading zero of the called subprogram number can be omitted and the system does not alarms. Example: M98 P12; it expresses to call the subprogram O0012 one time; the leading zero cannot be omitted when the subprogram call times are more than one.

The called subprogram name in M98 must be the program in the system and be less than 9999, and the subprogram name must be input.

The specified call times in M98 is $1 \sim 9999$.

The called subprogram format in M98 is the following. The last end of the subprogram must be M99 instead of M30, its program compiling format is the same that of the main program compiling format.

Subprogram: ODDDD; (subprogram name)

...; ...; M99; (return from subprogram)

Chapter 3 MSTF Codes

Fig.3-1 subprogram call

The called subprogram can call other subprograms. The subprogram called by the main program is called as the one-embedded subprogram, and the one called by the one-embedded subprogram is called as the two-embedded subprogram and so forth. One main program can call 12-embedded subprogram (including macro program call). The following is the four-embedded subprogram.

Note 1: An alarm occurs when the system has not searched the subprogram specified by P; Note 2: In MDI mode, inputting M98P_ cannot call a subprogram, otherwise, an alarm occurs; Note 3: An alarm occurs when P98P_ call itself;

Note 4: An alarm occurs when M98 is executed and the subprogram is called without P code.

3.1.6 Subprogram Call M198

Command function: in Auto mode, when M198 is executed and the other codes in the current block has been performed, the CNC calls the subprogram in the external input/output device (usually, it is U disk) specified by P.

爲┌─州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

The code usage and notes are those of M98, and the operations are referred to M98.

3.1.7 Return from Subprogram M99

Executed block after returning to the main program is $0000 \sim 9999$, and its leading zero can be omitted.

- Command function: After other codes of current block in the subprogram are executed, the system returns to the main program and continues to execute next block specified by P, and calls a block following M98 of current subprogram when P is not input. The current program is executed repeatedly when M99 is defined to end of program (namely, the current program is executed without calling other programs).
- Example: Execution path of calling subprogram (with P in M99) as Fig. 3-3.Execution path of calling subprogram (without P in M99) as Fig. 3-4.

- Note 1: M99 does not need to be specified in the alone block. Example: G00 X100 Z100 M99;
- Note 2: An alarm occurs when M99 has executed the block number which does not exist;
- Note 3: In Auto mode, the specified block number following M99 is repetitive, and the system executes the followings: 1. when the two block numbers are front of M98 block, the program returns to the later

Chapter 3 MSTF Codes

repetitive block; 2. when the two block numbers are behind of M98 block, the program returns to the top repetitive block; 3. when the two block numbers are separately in front of or behind of M98 block, the program returns to the later repetitive block;

Note 4: In Auto mode, the system ignores the line and returns to the beginning of the file to perform the execution when the main program ends in M99 and specifies the line number following P.

3.1.8 Standard M Codes for Standard Ladder

Some functions may be relevant with the system's allocation, and the used M codes for some machine are referred to the machine manufacture's user manual.

Code	Function	Remark	
M00	Program pause		
M03	Spindle clockwise (CW)		
M04	Spindle counterclockwise (CCW)	Functions interlocked and states reserved	
*M05	Spindle stop	1	
M08	Cooling ON	Eurotions interlocked and states reserved	
*M09	Cooling OFF		
M10	Tailstock forward	Functions interlocked and states reserved	
*M11	Tailstock backward		
M12	Chuck clamping	Functions interlocked and states reserved	
M13	Chuck releasing		
M14	Spindle position control	Functions interlocked and states reserved	
*M15	Spindle speed control	Functions intendened and states reserved	
M16	The 2 nd spindle position control	Eurotions interlocked and states reserved	
*M17	The 2 nd spindle speed control	Fullcions intendened and states reserved	
M18	The 3 rd spindle position control	Eurotions interlocked and states recorded	
*M19	The 3 rd spindle speed control		
*M20	Positive rigid tapping	Eurotions interlocked and states reserved	
M21	Reverse rigid tapping		
*M24	The 1 st spindle rigid tapping		
M25	The 2 nd spindle rigid tapping	Functions interlocked and states reserved	
M26	The 3 rd spindle rigid tapping	1	
M29	Rigid tapping		
M32	Lubricating ON	Functions interlocked and states reserved	
*M33	Lubricating OFF		
M35	Spindle HOLD start	Functions interlocked and states reserved	
*M36	Spindle HOLD close		
M37	Chip cleaner rotation CCW		
M38	Chip cleaner rotation CW	Functions interlocked and states reserved	
*M39	Chip cleaner stop	1	
M41,M42 M43,M44	Spindle automatic gear shifting	Functions interlocked and states reserved	
M51 ~ M58	Spindle 8-point orientation	Functions interlocked and states reserved	

M63	The 2 nd spindle rotation CCW	
M64	The 2 nd spindle rotation CW	Functions interlocked and states reserved
*M65	The spindle 2 nd spindle stop	
M73	The 3 rd spindle rotation CCW	
M74	The 3 rd spindle rotation CW	Functions interlocked and states reserved
*M75	The 3 rd spindle stop	

3.1.9 Notes for M Codes

- 1. M00, M01, M02, M30, M98, M99 is separately specified in one block. When it with other M code are specified, the system ignores the other M code and the above M code is executed; when the above seven M codes are in the same block, the first executed M code is valid.
- 2. When M05, M11, M13, M33, M9 and G codes are in the same block, there are two execution methods:

a) The motion codes and M miscellaneous function codes are executed simultaneously.

b) The miscellaneous function codes following the motion codes are executed.

Refer to the tool manufacturer's user manual. The second method is executed for GSK's standard ladder.

- CNC permits there are up to specified 3 codes in one block (when NO.3404 Bit7 M3B is set to 1), some M codes cannot be specified simultaneously because of machinery operation, such as the spindle's automatic gear change codes: M41, M42, M43, M44.
- 4. No.3010 sets the delay time of the strobe signal MF, SF, TF signals.
- 5. No.3011 sets the width of M, S, T function end signals (FIN).

3.2 Spindle Function

S code is used to controlling spindle speed. In GSK988TA/TB spindle speed control, NC outputs 0~10V analog voltage signal to spindle servo device or inverter to realize the gradeless spindle speed.

3.2.1 Spindle Speed Analog Voltage Control

Command format: S DDDDD

Command function: the spindle speed is defined, and the system outputs $0\sim$ 10V analog voltage to control spindle servo or converter to realize the stepless timing. S code value is not reserved, and it is 0 after the system is switched on.

Command explanation: spindle speed analog voltage control code

neans the set spindle speed, its value range is referred to Table 1-4, and the leading zero can be omitted. When the value exceeds the range set by No.3772, the most spindle speed limit is specified in the program, and S value is specified to the most spindle speed; when it is not specified, the upper and lower limit of S value is specified. The system alarms when the decimal is input to the specified of the S value. The system can set the digit number by No.3031.

Chapter 3 MSTF Codes

The first spindle of the CNC can execute 4-gear spindle speed, and the second spindle has 2-gear spindle speed. In executing S code, the system counts the analog voltage value corresponding to the specified speed according to setting value(corresponding to No.3741 \sim No.3744) of max. spindle speed (analog voltage is 10V)of current gear, and then outputs to spindle servo or converter to ensure that the spindle actual speed and the requirement are the same.

After the CNC is switched on, the analog output voltage is 0V. The analog output voltage is reserved (except that the system is in cutting feed in the surface speed control mode and the absolute value of X absolute coordinates is changed) after S code is executed. The analog output voltage is 0V after S0 is executed. The analog output voltage is reserved when the system resets and emergently stops.

When the spindle speed analog voltage control is valid, there are 2 methods to input the spindle speed: the spindle fixed speed is defined by S code(r/min), and is invariant without changing S code value, which is called constant speed control(G97 modal); other is the tangent speed of tool relative to the outer circle of workpiece defined by S code, which is called constant surface speed control (G96 modal), and the spindle speed is changed along with the absolute coordinates value of X absolute coordinates in programming path when cutting feed is executed in the constant surface speed.

3.2.2 Spindle Override

When the spindle speed analog voltage control is valid, the spindle actual speed can be tuned real time by the spindle override and is limited by max spindle speed of current gear after the spindle override is tuned, and it also limited by limited values of max. and min. spindle speed in constant surface speed control mode.

The system supplies 8 steps for spindle override ($50\% \sim 120\%$ increment of 10%). The actual steps and tune of spindle override are defined by PLC ladder and introductions from machine manufacturer should be referred when using it. Refer to the following functions of GSK988TA/B standard PLC ladder.

The spindle actual speed specified by GSK988TA/TB standard PLC ladder can be tuned real time by the spindle override tune key at 8 steps in $50\% \sim 120\%$ and it is not reserved when the spindle override is switched off. Refer to the operations of spindle override in II OPERATION.

3.2.3 Multi-Spindle Control

GSK988TA/TB has a multi-spindle control function (controlling up to 3 spindles). Besides the 1st spindle control, S code from CNC can control the 2nd and the 3rd spindle. The spindle code is the same with the previous, using one S code. PLC sending a signal or address P code determines to select one of 3 spindles.

Like the 1st spindle, the 2nd spindle and the 3rd spindle can execute 2-level gear switch.

Besides, max. speed set by each spindle can be clamped at their separate speed. (it is determined by the setting of No.3772.)

The system can select the 2nd, 3rd spindle's position encoder interface; the 1st \sim 3rd position encoder selection is determined by the signal from PLC.

Note: the multi-spindle control is valid when No.3710 CNC controllable spindle quantity exceed 1.

Control method

Multi-spindle speed specifies 2 methods: 1: S code and the spindle rotation M code are executed (supported by PLC), 2: P code specifies the speed to the spindle.

1: S code and the spindle rotation M code executing relevant parameters (take the standard ladder defaulted by the CNC as the standard)

Relevant parameter setting:

	Parameter	Parameter definition	Setting
	number		value
System	3703#3	In multi-spindle control, whether to use SWS to	0
parameter		perform the spindle selection: 0 No, 1 Yes	
	3709#2	In multi-spindle control, SIND is valid 0: it is valid only to the 1 st spindle 1: it is valid to all spindles	1
PLC	K16.2	In multi-spindle control, the spindle speed S	1
parameter		1: it with M are executed, 0: it is specified by	
		Р	

Relevant M command explanation:

M03, the 1^{st} spindle rotation (CW), M04, the 1^{st} spindle rotation (CCW), M05, the 1^{st} spindle stop M63, the 2^{nd} spindle rotation (CW), M64, the 2^{nd} spindle rotation (CCW), M65, the 2^{nd} spindle stop

Usage: using the 1st spindle can directly use M03/M04 S****, using the 2nd spindle can use M63/M64 S****. When S is executed but M code for the spindle rotation is not specified in running programs, PLC outputs the speed code to the spindle which is the last one to start rotation (CW/CCW), but when the system is turned on and it does not code any spindle rotation (CW/CCW), it codes S code to output to the 1st spindle.

Programming example:

```
N10 M03 S1000 (start the 1<sup>st</sup> spindle rotation(CW), speed: 1000 rotations)
N20
      T0101
 *****
 *****
       S1500 (the 1<sup>st</sup> spindle speed: 1000 rotations)
N50
 *****
 ****
N100 M63 S2000 (start the 2<sup>nd</sup> spindle rotation(CW), speed: 2000 rotations)
 *****
 *****
        S1800 (change the 2<sup>nd</sup> spindle speed into 1800 rotation)
N150
 *****
 *****
```


Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 3 MSTF Codes

N200 M05 (stop the 1st spindle) N210 M65 (stop the 2nd spindle) N220 M30

2: P code specifying parameters relevant with speed

	Parameter number	Parameter definition	Setting value
	3703#3	In multi-spindle control, whether to use SWS to select the spindle: 0 No, 1 Yes	1
	3706#2	In multi-spindle control, when the system sets to select the spindle by address P, it specifies P without S: 0: an alarm occurs 1: use the last P executed by S_P_; . After the system is turned on, No.3775 value is used but P is never executed	To be set
	3709#2	In multi-spindle control, SIND is valid 0: it is valid to only the 1st spindle 1: it is valid to all spindles	1
System parameter	3713#6	In multi-spindle control, when a program code based on address P executes the spindle selection, whether the position encoder feedback used in thread cutting/feed per rotation is automatically switched in accordance with the selected spindle 0: do not switch 1: switch	0
	3775	In multi-spindle, the defaulted spindle selects P code value (MPD): in multi-spindle control, set the defaulted P code value when S_P is not executed one time after power-on	1
	3781	In multi-spindle, select the spindle's P code (MPS): the parameter sets to select each spindle's P code in multi-spindle control. Specify P in the block in which the S code is	S1: 1 S2: 2 S3: 3
PLC	K16.2	In multi-spindle control, the spindle speed S 1: it is executed with M, 0: it is specified by P	0

Example:

N10 M03 P1 S1000 (start the 1st spindle rotation(CW), speed: 1000 rotations) N20 T0101 ****** N50 P1 S1500 (the 1st spindle speed: 1500 rotations) ****** N100 M63 P2 S2000 (start the 2nd spindle rotation(CW), speed: 2000 rotations)


```
*****
```

```
N150 P2 S1800 (change the 2<sup>nd</sup> spindle speed into 1800 rotation)
******
N200 P1 S500 (the 1<sup>st</sup> spindle speed is executed to 500 rotations)
N210 P2 S700 (the 2<sup>nd</sup> spindle speed is executed to 700 rotations)
N220 M30
```

```
Note 1: No matter what the spindle uses the method, the spindle override is valid to the spindle which is the last to start the rotation (CW/CCW).
```

Note 2: The spindle constant surface speed control is valid to the 1st spindle.

3.3 Tool Function

3.3.1 Tool Offset

Tool functions (T code) of GSK988TA/TB: automatic tool change and executing tool offset. Control logic of automatic tool change is executed by PLC and tool offset is executed by NC.

Command format:

T <u>___</u> <u>00</u>

Tool offset number (the leading zero cannot be omitted) Target tool number (the leading zero can be omitted)

Command function: The automatic tool post rotates to the target tool number and the tool offset of tool offset number executed is executed. The tool offset number can be the same as the tool number, and also cannot be the same as it, namely, one tool can corresponds to many tool offset numbers. After executing tool offset and then $T_{\Box\Box}00$, the system reversely offset the current tool offset and the system its operation mode from the executed tool length compensation into the non-compensation, which course is called the canceling tool offset, called canceling tool offset number displayed by T code is the state before the system is switched off, the tool offset number is in the cancelling state(i.e. 00 state).No. 3032 sets T code digit, and No.5002 Bit 0(LD1) sets the digit of tool offset number.

Toolsetting is executed to gain the position offset data before machining (called tool offset), and the system automatically executes the tool offset after executing T code when programs are running. Only edit programs for each tool according to part drawing instead of relative position of each tool in the machine coordinate system. If there is error caused by the wearing of tool, directly modify the tool offset according to the dimension offset.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 3 MSTF Codes

The tool offset is used for the programming. The offset corresponding to the tool offset number in T code is added or subtracted on the end point of each block. X tool offset in diameter or radius is set by No.5004 Bit1(ORC). For X tool offset in diameter or radius, the external diameter is changed along with diameter or radius when the tool length compensation is changed.

Example: When the state parameter No.5004 Bit1 is set to 0 and X tool length compensation value is 10mm, No.5004 Bit1 is set to 1 and X tool length compensation value is 10mm the diameter of workpiece external diameter is 20mm.

Fig. 3-6 is to create, execute and cancel the tool offset in movement mode.

- Example: When the state parameter No.5004 Bit1 is set to 0 and X tool length compensation value is 10mm, No.5004 Bit1 is set to 1 and X tool length compensation value is 10mm the diameter of workpiece external diameter is 20mm.
- Fig. 3-6 is to create, execute and cancel the tool offset in movement mode.

Fig. 3-6 Creation, execution and cancellation of tool lengthG01 X100 Z100 T0101;(Block 1, start to execute the tool offset)G01 W150;(Block 2, tool offset)G01 X50 Z300 T0100;(Block 3, canceling tool offset)

There are two methods to execute the tool offset(they are set by No.5002 Bit4(LGT)):

- (1) The tool length compensation is executed by the tool traversing;
- (2) The tool length compensation is executed by modifying the coordinates; Example:

Tool offset number		Х	Z
01	Offset	0.0000	0.0000

	Wear	0.0000	0.0000
02	Offset	12.0000	-23.0000
	Wear	0.0000	0.0000
03	Offset	24.5600	13.4520
	Wear	0.0000	0.0000

Fig. 3-7 Tool traversing mode to execute the tool offset

Chapter 3 MSTF Codes

Fig. 3-8 Modifying the coordinates mode to execute the tool offset

When T code and the motion code are in the same block, they are executed simultaneously, in executing tool change, the system executes by adding the current tool offset to coordinates of motion code and whether the cutting feedrate or the rapid traverse speed is defined by the motion code. Note 1: In tool traversing compensation mode, when the system executes the tool offset, NO. 5002 Bit6 (LWM)

sets the valid method of the tool offset:

LWM=0: it is valid in the block of T code

LWM=1: it is valid in the axis movement block

Note 2: No.5001 Bit6 (EVO) sets the valid method of modifying tool wear tool when the system executes the

program:

EVO =0: it is valid in the next specified T code

EVO =1: it is valid in the next buffer block

- Note: After the tool wear value is modified, the system executes the wear value according to No.5002.2 setting method to avoid the too big wear value.
- Note 3: It is suggested that the program should be complied according to the normative method, that is, the tool change is executed in the safe position and then the absolute value code is used to position to the starting point of the machining.
- Note 4: In the coordinate offset compensation mode, when the system executes the tool offset and executes T function code instead of movement code, it uses G50 to set the coordinate system, the displayed absolute coordinate value is that the coordinate value set by G50 adds or subtracts the unexecuted tool compensation value.
- Note 5: T code can use the leading zero. When T00□□ is executed or only tool offset number is executed in the program and the current tool number is not changed, the system only correspondingly modifies the current tool offset value.

Note 6: After executing the miscellaneous function lock is valid, the system does not execute the tool change when T code is executed but the tool offset is executed. When using the miscellaneous function lock checks the program function, it is executed in the safety position.

3.3.2 Tool Life Management

When the tool life management is used, TLF (No.8132#0) is set to "1".

The tools are divided into many groups, each group specifies a corresponding tool life (used time or times). The tool is used one time, the used time or times is added up total. When the current tool life reaches, the system selects the next tool in the same group according the set tool number order in advance. An alarm occurs when all tool lives are run out of in the group.

3.3.2.1 Tool Life Management Data

Set the used max. group number in No.6813. No.6800 bit0 and bit1 (GS1 andGS2) set the actual group quantity and the usable max. tool quantity in each group.

GS1	GS2	Group quantity	Tool quantity
0	0	1/8 of 1~max. group quantity (NO.6813)	1~16
0	1	1/4 of 1~max. group quantity (NO.6813)	1~8
1	0	1/2 of 1~max. group quantity (NO.6813)	1~4
1	1	1~ max. group quantity (NO.6813)	1~2

Note 1: After No.6813 or No.6800 bit 0 and bit 1 (GS1 and GS2), executing the tool life data's input program sets the tool life data again.

Note 2: The same tool number exists in any place at any time in the program of tool life data.

Note 3: T code for the tool registration is composed of the tool selection number and tool offset number. Note 4: When the tool life management function is used, No.5002 bit0 must be zero.

3.3.2.2 Tool Life Time Count

When the tool life count mode is not specified in the tool life data input program, setting LTM (No.6800#2) value determines the time or times to specify the tool life.

1. Specify the tool life by the used time

FGL (#6805.1) specifies the tool life's unit (0 : 1 minute as the unit; 1 : 0.1 sec as the unit).

When the tool group code $(T_{\Box\Box}99)$ is specified, the tool which life has reached in the group, and the system starts executing the selected tool's tool life management. The required time in single block stop, feed hold, rapid traverse, dwell, machine lock and interlock is not counted into the currently used tool life.

The tool life can be specified up to 4300 minutes. The set max. life is 4300(minutes) or 2580000 (0.1 sec) minutes according to #6805.1.

2. Specify the tool life by the used times

When the tool group code $(T_{\Box\Box}99)$ is specified, a tool which life has not reached in the group is selected, which makes the selected tool life count is added to 1. But the tool life count is not executed and M code is started, only when the tool life count is not executed to start M code, the

Chapter 3 MSTF Codes

reset state is in the initial tool group number code and tool change code of automatic run start state, the system can execute the new tool selection and count.

The tool life can be set up to 65535 times.

Note: the same tool group number in a program is executed many times, the used times is not added up and a new tool is not selected.

3.3.2.3 Tool Life Count Restarting M Code

When the tool life count is specified by the times, and the tool life count restarting M code is executed, the tool group which life has reached even if there is one tool outputs the tool change signal. In the tool group code (T code) after the tool life count restarting M code, a tool which life has not reached in the specified tool group is selected, and the tool life count is added up to 1. So, even if the CNC enters other conditions except for the initial tool group code (T code) following the reset state into the automatic run start state. The tool life count restarting M code is specified by No.6811.

3.3.2.4 Tool Life Management Code in Machining Program

The tool life is used in the machining program, T code codes the tool group according to the following format.

Command format:

.

T□□99; end the previous group's tool life count, start to use the tool which life has not reached in group □□ and output T code signal, and start to execute the tool life count in group □□.

.

T□□88; end the tool life management in group □□, cancel the tool offset which is being used, output the tool number and T code signal

.

M02 (M30); end the machining program;

Command function:

Execute the machining according to the specified group and the tool life management

Example: supp	ose that the digit of the offset number is 2
T0199:	Select the tool which life has not reached in group 1
	(Suppose that T1001 is selected, the tool number is 10, and
	theoffset number is 01
•	Select the tool life count in group 1
:	(count the tool life which tool number is 10)
:	(count the tool life which tool number is 10)
10188;	
:	Cancel the tool post's offset which is being used in group 1
:	(because the tool which is being used is T1001, the tool
:	number is 10, and the tool number is 00.)
:	
T0299;	
:	
:	Select the tool which life has not reached in group 2
:	(Suppose that T2002 is selected, the tool number is 20, and
:	theoffset number is 02.)
T0299;	Select the tool life count in group 2
:	(count the tool life which tool number is 20)
:	
:	Many offset numbers in the tool being used in group 2 are
:	executed, the next offset number is selected.
T0301:	(suppose there is T2002 T2003 in the tool number 20.
	T2003 is selected. When the tool number is 20, the offset
	number is 03)
	The tool life count ends in aroun 2, which is executed as a
	common T code
	(the tool number is 02) and the tool number is 01.

Note: When Toog is not executed before Too 88, an alarm occurs.

3.3.2.5 Automatically Inputting a Tool Life Data

Using G10/G11 can input the tool life management data and its format is shown below: (1) delete data in all groups when log-in:

Format	Symbol description
G10 L3;	G10 L3: delete all groups when log-in
P- L-;	P-: group number
Т-;	L-: tool life value
Т-;	T-: tool number and tool offset number
	G11: log-in ends
P- L-;	
Т-;	
Т-;	

Chapter 3 MSTF Codes

G11;	
M02(M30);	

After the logged-in all tool life management data are deleted, the system logs-in the programmed tool life management data.

(2) Change the tool life management data

Format	Symbol description
G10 L3 P1;	G10 L3 P1: start to change the group data
P- L-;	P-: group number
Т-;	L-: tool life value
Т-;	T-: tool number and tool offset number
	G11: log-in ends
P- L-;	
Т-;	
Т-;	
G11;	
M02(M30);	

Set the tool life management data or change the logged-in tool life management data in the tool life management data group which is not logged in.

(3) Delete the tool life management data:

Format	Symbol description		
G10 L3 P2;	G10 L3 P2: start to delete the group data		
P- ;	P-: group number		
P- ;	G11: the deletion ends		
P- ;			
P- ;			
G11;			
M02(M30);			

(4) Set the tool life group's count type

Format	Symbol description
G10 L3 ;	
(G10 L3 P1);	
P- L- Q-;	
Т-;	Q: life count type
Т-;	(1: times, 2: time)
G11;	
M02(M30);	

Note 1: P following G10 being 1 means the group's data change, being 2 means to the group's data, omitting P means to delete all groups and log-in the tool life group. Cannot mix with P tool life group number executed internally by G10

Note 2: When Q is omitted, the life count type is set according to LTM (No.6800#2) 's setting value.

3.3.2.6 Process when the Tool Life End

When the tool life count is executed and the last tool life in the group has reached, a tool change signal is output. When the tool life count is specified by time, a tool change signal is immediately output once the last tool life in the group has reached. When the tool life count is specified by times, the last tool life in the group has reached, the CNC is reset by M02 or M30, or the tool life count restarting M code is executed, a tool change signal is output.

When LFI(No.6804#6) is set to 1, the tool life count's invalid signal LFCIV can switch the tool change life count to be valid/invalid.

When the tool life count's invalid signal LFCIV is set to 1, the tool life count's invalid signal LFCIF being 1 means the life count to be invalid.

When the tool life count's invalid signal LFCIV is set to 0, the tool life count's invalid signal LFCIF being 0 means the life count to be invalid.

3.3.2.7 Tool Life's Relevant Signal

Tool change signal TLCH<Fn064.0>

[Classification] output signal

[Function] the signal informs the last tool life in the group has reached.

[Output condition] when the followings become '1'.

The tool life has reached, the next tool in the group is selected orderly, and the last tool life in some group has reached.

When the followings become '0'.

When there is no tool group which life has reached.

The signal becomes '1', the CNC sends the tool change reset signal TLRST or MDI operation by PLC side, the signal becomes '0' when the CNC informs the tool change has completed for the all groups which life have reached.

Tool change reset signal TLRST<Gn048.7>

[Classification] input signal

[Function] the group life count, all execution data with *, @ is cleared.

After all tools in the group which life have reached displayed in the window are changed into new tools, the tool group number selection signal (TL1 \sim TL512) specifies the group number and the singal is input. When GRS(No.6800#4) is set o "1", the tool group number selection signal cannot be input, the logged-in all groups' data are cleared.

Besides, operations by MDI mode are cleared.

Signal for tool change one by one TLCHI<Fn064.2>

[Classification] output signal

[Function] when the tool life count is specified by time, it informs the currently used tool life has reached. A tool change program is inserted by the signal, the program can be restarted after the tool change is executed.

Reset signal for tool change one by one TLRSTI<Gn048.6>

[Classification] input signal

Chapter 3 MSTF Codes

[Function] the tool signal TLCHI for the tool change one by one is set to '0'.

Tool skip signal TLSKP<Gn048.5>

[Classification] input signal

- [Function] the CNC skips the tool which life has not reached to forcibly select the next tool. Select one of the following two methods by SIG (No.6800#3).
- (i) Using the tool group number selection signal specifies the group number (SIG='1') The tool group number selection signal (TL1~TL512) specifies the tool's group number and the tool skip signal is set to '1'. By the operation, the system selects the next tool in the next T code having specified the skip group.
- (ii) Specify the group number not by the tool group number selection signal (SIG='0') The tool skip signal TLSKP is set to '1' without specifying the group number, which is taken as the system has specifies the currently selected tool's group. By the operation, the system selects the next tool in the next T code having specified the skip group. But, when the tool skip signal TLSKP is set to '1' relative to the last tool, the tool change signal TLCH becomes "1".

A new tool selection signal TLNW<Fn064.1>

[Classification] output signal

[Function] the signal informs the PMC side has selected the group's new tool. When the new tool is selected, and automatically measuring the tool's tool length compensation is performed, it is used.

[Output condition] when the followings become '1'.

When the tool group number is executed by T code, the used tool's life has reached in the group and the next new tool is selected. After a new tool code signal is sent, the signal becomes '1' while the system sends the tool function strobe pulse signal TF.

When the followings become '0'.

When the signal is '1', the strobe pulse signal TF completion signal FIN becomes '1'.

Tool group number selection signal TL01~TL128 <Gn047.0~Gn047.7>

[Classification] input signal

[Function] specify the tool group number. When the tool change reset signal TLRST or the tool skip signal TLSKP is input, the signal specifies some group to execute the tool change reset or tool skip.

Tool life count override signal *TLV0~*TLV9<Gn049.0~Gn050.1>

[Classification] input signal

[Function] when the tool life count type is specified by time, LVF(No.6801#2) is set to "1", i.e., the tool life count is applied with override. Its 10 binary code signals and the override value are executed according to the following method

Overrideva lue =
$$\sum_{i=0}^{9} \{2i \times Vi\}$$
 times

Use it in the override value range. *TLVi is '1', Vi=0

*TLVi is '0', Vi=1

*TLV7, *TLV6, *TLV3 are '0': the override value is counted according to the following formular: 12.8+6.4+0.8=20.0

So, the life count is twentyfold of the previous.

When all signals are '1', the override value becomes 0 times. Set it within $0 \sim 99.9$ times in every step 0.1 times.

It is clamped at 99.9 times when it exceeds 99.9 times.

The tool life management count time is time that the actual cutting time based on the life count by time multiplies the signal's selected override value. Example: when the override value is 0.1 times, the actual cutting time is set to 1000 seconds, the tool life count time is 100 seconds.

Tool life anticipating signal TLCHB <Fn064.3>

[Classification] output signal

[Function] by setting the redesigned value before selecting a new tool, using the life count, when the life surplus (life value- life count value) in the group is the "same" with the set redesigned value, or in the "following", the system outputs the tool life anticipating signal to anticipate in advance. The tool life anticipating signal is output by ARL(No.6802#4) selecting a tool one by one or when there is the last tool in the group. The CNC redesigns the count value and uses (No.6844,No.6845).

[Output condition] When the followings become '1'.

RMT(No.6802#7)=0:

Life surplus (life value – life count value) \leq redesigned count value

RMT(No.6802#7)=1:

Life surplus (life value—life count value) = redesigned count value

When the followings become '0'.

RMT(No.6802#7)=0:

Life surplus (life value—life count value) > redesigned count value

RMT(No.6802#7)=1:

Life surplus (life value−life count value) ≠redesigned count value

Tool life count's invalid signal LFCIV<Gn048.2>

[Classification]input signal[Function]make the tool life count invalid when selecting.

Tool life count being invalid's signal LFCIF<Fn093.2>

[Classification] output signal

[Function] the signal informs the being selected tool life count is invalid.

[Output condition] when the followings become '1'.

The tool life count's invalid signal LFCIV is set to '1' and the life count is invalid. When the followings become '0'.

The tool life count's invalid signal LFCIV is set to '0' and the life count is valid.

Chapter 4 Tool Nose Radius Compensation

4.1 Application

4.1.1 Overview

Part program is compiled generally for one point of tool according to a workpiece contour. The point is generally regarded as the tool nose A point in an imaginary state (there is no imaginary tool nose point in fact and the tool nose radius can be omitted when using the imaginary tool nose point to program) or as the center point of tool nose arc (as Fig. 4-1). Its nose of turning tool is not the imaginary point but one arc owing to the processing and other requirement in the practical machining. There is an error between the actual cutting point and the desired cutting point, which will cause the over- or under-cutting affecting the part precision. So a tool nose radius compensation is needed in machining to improve the part precision.

Fig. 4-1 Tool

B tool compensation is defined that a workpiece contour path is offset one tool nose radius, which cause there is excessive cutting at an intersection of two programs because of executing motion path of next after completing the previous block.

To avoid the above-mentioned ones, the system uses C tool compensation method (namely, tool nose radius compensation). The system will read the next block instead of executing it immediately after reading a block in C tool compensation method, and count corresponding motion path according to intersection of blocks. Contour can be compensated precisely because reading two blocks are pretreated as Fig.4-2.

Fig. 4-2

4.1.2 Imaginary Tool Nose Direction

Suppose that it is generally difficult to set the tool nose radius center on the initial position as Fig. 4-3; suppose that it is easily set the tool nose on it as Fig. 4-4; The tool nose radius can be omitted in programming. Fig. 4-5 and Fig.4-6 correspond separately to the tool paths of tool nose center programming and imaginary tool nose programming when tool nose radius is executed or not.

Fig. 4-6 Tool path in imaginary tool nose programming

The tool is supposed to one point in programming but the actual cutting blade is not one ideal point owing to machining technology. Because the cutting blade is not one point but one circular, machining error is caused which can be deleted by tool nose circular radius compensation. In actual machining, suppose that there are different position relationship between tool nose point and tool nose circular center point, and so it must create its correct direction of imaginary tool nose.

From tool nose center to imaginary tool nose, set imaginary tool nose numbers according to tool direction in cutting. Suppose there are 10 (T0 \sim T9) kinds of tool nose setting and 9 directions for position relationship. The tool nose directions are different in different coordinate system (rear tool

post coordinate system and front tool post coordinate system) even if they are the same tool nose direction numbers as the following figures. In figures, it represents relationships between tool nose and starting point, and end point of arrowhead is the imaginary tool nose; $T1 \sim T8$ in rear tool post coordinate system is as Fig. 4-7; $T1 \sim T8$ in front tool post coordinate system is as Fig. 4-8. The tool nose center and starting point for T0 and T9 as Fig. 4-9.

Fig. 4-9 Tool nose center on starting point

Note: The general imaginary tool nose direction $1 \sim 8$ are used to G18 level, the imaginary tool nose 0 or 9 is used to G17 and G19 levels. The imaginary tool 0 or 9 used to G18 is valid, but the imaginary tool nose direction $1 \sim 8$ are used to G17 and G19 levels, the system uses the nose 0 to execute the compensation.

4.1.3 Compensation Value Setting

Preset imaginary tool nose number and tool nose radius value for each tool before executing tool nose radius compensation. Set the tool nose radius compensation value in **"TOOL OFFSET&WEAR"** window (see Fig. 4-1), R is tool nose radius compensation value, T is imaginary tool nose number, and the radius compensation value is the sum of offset radius and wear radius.

Tool offset		×	7	 Р	т
No.		^		ĸ	I
001 -	Offset	0.000	0.000	 0.380	3
	Wear	0.000	0.000	 0.000	5
002 -	Offset	10.000	10.000	 0.250	з
	Wear	0.020	0.040	 0.000	5
003	Offset	14.000	15.000	 1.200	з
	Wear	1.020	0.123	 0.000	
	Offset			 	
	Wear			 	
099 -	Offset	10.000	12.000	 0.300	0
	Wear	0.050	0.058	 0.000	

Table 4-1 Display window of system tool nose radius compensation value

In toolsetting, the tool nose is also imaginary tool nose point of Tn (n=0~9) when taking Tn(n=0~9) as imaginary tool nose. For the same tool, offset value from standard point to tool nose radius center (imaginary tool nose is T3) is different with that of ones from standard point to imaginary tool nose(imaginary tool nose is T3) when T0 and T3 tool nose points are selected to toolsetting in rear tool post coordinate system, taking tool post center as standard point. It is easier to measure distances from the standard point to the tool nose radius center than from the standard point to the imaginary tool nose, and so set the tool offset value by measuring distance from the standard point to the imaginary tool nose(tool nose direction of T3).

Fig. 4-10 Tool offset value of tool post center as benchmark

4.1.4 G40/G41/G42 Command function

Taking the previous and the current position increment as the programmed path can cancel the tool compensation mode, and its direction is the compensation direction of the previous. When the system specifies (I, J), (I, K) or (J, K), the vector defined by it can replace the current position increment to execute the count.

Command format:

$$\begin{cases} G17 \\ G18 \\ G19 \end{cases} \begin{bmatrix} G41 \end{bmatrix} \begin{bmatrix} G00 \\ G01 \end{bmatrix} Xp_Yp_Zp_$$

In machining workpiece, the tool offset cannot easily compensate the precise workpiece because of the tool nose circle degree but the tool nose radius compensation function can automatically compensate the error.

Fig. 4-11 G40 execution process

Command explanation:

Codes	Function specifications		
G40	Cancel the tool nose radius compensation		
G41	Tool nose radius left compensation is specified by G41 in rear tool post coordinate system and tool nose radius right compensation is specified by G41 in front tool post coordinate system		
G42	Tool nose radius right compensation is specified by G42 in rear tool post coordinate system and tool nose radius left compensation is specified by G42 in front tool post coordinate system		
Хр	X and its parallel axis		
Үр	Y and its parallel axis		
Zp	Z and its parallel axis		
I	X and its parallel axis' cancellation vector (radius value), their value range are the same those of X, and their values are positive and their directions are in X's positive direction, their value are negative and their directions are in X's negative direction.		
J	Y and its parallel axis' cancellation vector (radius value), their value range are the same those of Y, and their values are positive and their directions are in Y's positive direction, their value are negative and their directions are in Y's negative direction.		
К	Z and its parallel axis' cancellation vector (radius value), their value range are the same those of Z_{2} and their values are positive and their directions are in Z's positive direction, their value are negative and their directions are in Z's negative direction.		

4.1.5 Compensation Direction

Specify its direction according to relative position between tool nose and workpiece when executing tool nose radius compensation as Fig. 4-12 and Fig.4-13.

Fig. 4-13 Compensation direction of front coordinate system

4.1.6 Notes

- Note 1: In initial state, when the system is in the tool nose radius compensation cancel mode, and the offset compensation number is not 0 in G41 or G42, the system starts creating the tool nose radius compensation offset mode; when the offset compensation number is 0, G modal is the G40 state.
- Note 2: In creating or cancelling tool compensation, the workpiece machining must not be executed, otherwise, it causes the overcut or undercut. The system takes the created first movement and the last movement code before being cancelled as the cutting code in normally machining workpiece.
- Note 3: The tool does not create the offset and starts compensation in the next movement code when there is no movement code in creating the tool compensation. When there is no movement code in cancelling tool compensation, the tool does not create the offset and the system cancels the compensation vector in the next movement code.
- Note 4: The next block to create the tool compensation block has the tool compensation cancel modal code, the system does not execute the tool compensation creation process, but at the moment, the modal code will change normally.
- Note 5: I/J/K/R is not specified in G02/G03 and #3403.5=0 (in circular interpolation, I, J, K is not specified, and R is not done, the linear moves to the end point), the system establishes the tool radius compensation. In other cases, the tool nose radius compensation creation and cancel only use G00 or G01 instead of G02 or G03. When it is specified, No.252 alarm occurs.
- Note 6: In tool nose radius compensation, the tool nose center moves to the end point of the last block and is vertical with the programmed path of the last when the system executes 3 or more than 3 blocks without movement code. At the moment, the overcut or undercut creates and the system should not machine the workpiece in the next block in programming. When 3 or more than 3 blocks without movement code following the movement code to create the tool nose radius compensation, the system does not create immediately the tool nose radius compensation but does it after the non-movement code.
- Note 7: The system does not execute the tool nose radius compensation in G50, G52, G32, G34, G92, G71, G72, G73, G74, G75, G76, G83-G85, G87-G89 and temporarily cancels the compensation mode. Before the system temporarily cancels the compensation execution and when the system modal is G02 or G03, No.262 alarms.
- Note 8: In G40, for the inner or outer machining, the system moves to the intersection of two paths, and executes the tool nose radius compensation cancel here, and then moves to the target point after the cancel. When there is no intersection and the tool reaches the normal line position of the end point of the last block, the system cancels the tool nose radius compensation and then moves the target point after the cancel. At the moment, the overcut creates, the workpiece must not be machined.

Note 9: In tool nose radius compensation mode, the system must not be switched to other levels, otherwise,

No.253 alarm occurs.

- Note 10: In tool nose radius compensation mode, when RESET key is pressed or M30/M02 is executed, the CNC cancels the tool compensation mode. When the CNC does not code G40 (cancel radius compensation) to execute M30/M02 (end of program), the tool nose center moves to the end point of the previous movement block and is perpendicular to the block's programmed path position. When M30/M02 has movement codes, the CNC normally cancels the radius compensation.
- Note 11: In MDI mode, the system cannot execute the tool nose radius compensation creation and its cancel. When the system specifies the tool nose radius compensation code, it executes the code according to No.5008 Bit4(MCR). When the parameter is set to 1, an alarm occurs.

4.1.7 Application

Machine a workpiece in the front tool post coordinate system as Fig. 4-14. Tool number: T0101, tool nose radius R=2, imaginary tool nose number T=3.

Set the correct imaginary tool nose direction for executing the toolsetting in offset cancel mode, Set the tool nose radius R and imaginary tool nose direction in **TOOL OFFSET & WEAR** window as following:

Ta	bl	е	3-	-7
10	~		~	

No	Х	Z	R	Т
001			2.000	3
002			\	
			Ŭ	
007				

Program:

G00 X100 Z50 M3 T0101 S600; (Position, start the spindle, execute the tool change and the tool compensation)

G42 G00 X0 Z3;

(Set the tool nose radius compensation)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 4 Tool Nose Radius Compensation

G01 Z0 F300; (Start the cutting) X16; Z-14 F200; G02 X28 W-6 R6; G01 W-7; X32; Z-35; G40 G00 X90 Z40; (Cancel the tool nose radius compensation) G00 X100 Z50 T0100; M30;

4.2 Tool Nose Radius Compensation Offset Path

4.2.1 Inner and Outer Side

Inside is defined that an angle at intersection of two motion blocks is more than or equal to 180° ; **Outside** is $0 \sim 180^{\circ}$, which is shown 4-15.

4.2.2 Tool Traversing when Start-up Tool

3 steps to execute tool nose radius compensation: tool compensation creation, tool compensation execution and tool compensation canceling.

Tool traverse is called tool compensation creation (start-up tool) from offset canceling to G41 or G42 execution.

Note: Meanings of S, L, C in the following figures are as follows:

S——Stop point of single block; L——linear; C——circular, R——tool radius compensation; α ——angle between two blocks.

(a) Tool traversing inside along corner($\alpha \ge 180^\circ$)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Fig.4-16 Linear — linear(start-up tool inside)

de) Fig. 4-17 Linear —circular (start-up tool inside)

Programming

(b) Tool traversing inside along corner(180°> α ≥90°)

Fig.4-18 Linear —linear(start-up tool outside) outside)

(c) Tool traversing inside along corner ($\alpha < 90^{\circ}$)

Fig.4-20 Linear —linear (start-up tool outside)

Fig. 4-21 Linear—circular (start-up tool outside)

Fig. 4-22 Linear—linear ($\alpha < 1^{\circ}$, start-up tool outside)

4.2.3 Tool Traversing in Offset Mode

it.

Offset mode is called to ones after creating tool nose radius compensation and before canceling

• Offset path without changing compensation direction in compensation mode

3) circular—linear

Fig. 4-25 Circular—linear (moving inside)

4) circular —circular

1) Machining inside ($\alpha < 1^{\circ}$) and zoom in the compensation vector

(b) Tool traversing outside along corner(180°>α≥90°)

circular—linear (moving outside) Fig.4-30

4)circular —circular

Fig.4-31 circular—circular (moving outside)

(c) Tool traversing outside along corner($\alpha < 90^\circ$)

Fig. 4-32 Linear—Linea (moving outside)

Fig. 4-33 Linear—circular (moving outside)

Fig. 4-36 Paths without intersection after offset

2) Center point and starting point of circular being the same one

Fig. 4-37 Center point and starting point of circular being the same one

Offset path of compensation direction in compensation mode

The compensation direction of tool nose radius is specified by G41 and G42 and the sign symbol is as follows:

Table	4-2

Compensation value sign G	+	-
G41	Left compensation	Right compensation
G42	Right compensation	Left compensation

The compensation direction can be changed in compensation mode in special cutting, it cannot be changed at starting block and its following one. There is no inside and outside cutting when the system changes the compensation direction. The following compensation value is supposed to be positive.

Tool nose center path

Fig. 4-38 Linear—linear (changing compensation direction)

3)circular—linear

Fig. 4-40 circular—linear (changing compensation direction)

2) linear—circular

4) circular—circular

Fig. 4-41 circular—circular (changing compensation direction)

5) The compensation is executed normally without an intersection point

When the system executes G41 and G42 to change the offset direction between block A and B, a vector perpendicular to block B is created from its starting point. **i**) Linear----Linear

Fig. 4-42 Linear—linear, no intersection (changing compensation direction)

ii) Linear ---circular

iii) Circular----circular

4.2.4 Tool Traversing in Offset Canceling Mode

In compensation mode, when the system executes G04, it enters the compensation canceling mode, which is defined to compensation canceling of block. The system cannot execute the circular code(G02 or G03) in canceling tool compensation mode, otherwise the system alarms and stops run.

(a) Tool traversing inside along corner($\alpha \ge 180^\circ$)

1) linear —linear

Fig. 4-45 Circular-linear (moving inner and canceling offset)

Fig. 4-46 Circular-linear (moving inner and canceling offset)

(b) Tool traversing outside along corner(180°>α≥90°)

Fig. 4-47 Circular—linear (moving outside and canceling offset)

(c) Tool traversing outside along corner($\alpha < 90^\circ$)

Fig. 4-49 Linear—linear (cutting outside and canceling offset)

Fig. 4-48 Circular—linear (moving outside and canceling offset)

Fig. 4-50 Linear—linear (cutting outside and canceling offset)

(d) Tool traversing outside along corner($\alpha < 1^{\circ}$); linear \rightarrow linear

4.2.5 Tool Interference Check

"Interference" is defined that the tool cuts workpiece excessively and it can find out excessive cutting in advance, the interference check is executed even if the excessive cutting is not created, but the system cannot find out all tool interferences.

(1) Fundamental conditions

- 1) The tool path direction is different that of program path, at the moment, No.257 alarm occurs (the angle is 90°~270°). The alarm does not occur when No.5008 Bit1 (CNC) is set to 1.
- 2) In machining arc, there is great difference the two angles(α >180°), the one is between the starting point and the end point of the tool center path, and the other is between the starting point and the end point of the programmed path, or the system cuts the inner of the arc (α > 180°), and the tool cannot pass the entrance, No.256 alarm occurs.

Fig. 4-52 Machining interference, No.257 alarm occurs

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

爲г≃州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

(2) Executing it without actual interference

1) Concave groove less than compensation value

Fig. 4-54 Executing interference (1)

Actually, without interference, but there are an excess of workpieces not be machined in the interior angle, the tool stops and No. 260 alarm occurs.

2) Concave channel less than compensation value

Fig. 4-55 Executing interference (2)

Directions of block B and tool nose radius compensation path are opposite without interference, the tools stops and No.257 alarm occurs.

(3) Automatic interference vector clear

Chapter 4 Tool Nose Radius Compensation

The system has the automatic interference vector clear function. For example, when the neighbor three blocks N10, N20, N30 execute the tool radius compensation, the section between N10 and N20 creates the vector V1, V2, V3 and V4, and the section between N20 and N30 creates V5, V6, V7, V8. The system executes the interference check to the last vectors in the above two group of vector, i.e. V4 and V5. V4 and V5 are ignored when there is the interference; the system checks V3 and V6, and they are ignored when there is the interference; the system does V2 and V7, and they are ignored when there is the interference, they cannot be ignored, the tool stops movement and the system alarms. Based on the above process, the system executes the interference check, and the tool runs according to the path of the first group vector which does not create the interference. When the last group of vector, they cannot be ignored, the tool stops movement and No.257 alarms.

Fig. 4-56 interference vector clear

- Note 1: NO.5008 Bit 0 (CNI) can set whether the interference check is executed in tool nose radius compensation mode.
- Note 2: NO.5008 Bit 1 (CNC) can set whether the system alarms when the difference 90°-270° between the movement direction and offset direction.
- Note 3: NO.5008 Bit 3 (CNV) can set whether the system executes the interference check and the vector clear.

4.2.6 Codes for Canceling Compensation Vector Temporarily

In compensation mode, when the system specifies G28, G30, G50, G52, G32, G34, the fixed cycle (including rigid tapping), multi cycle, drilling cycle code, the compensation vector is cancelled temporarily and is automatically resumed after executing the codes. At the moment, the compensation is cancelled temporarily and the tool directly moves from intersection to a point for canceling compensation vector. The tool directly moves again to the intersection after the compensation mode is resumed.

Note: do not machine workpieces in the movement block prior to the code for temporarily canceling radius compensation, otherwise cause overcut or downcut of workpieces when canceling or creating compensation.

• Setting coordinate system in G50, G52

Note: SS indicates a point at which the tool stops twice in Single mode.

Reference position automatic return G28, G30

In compensation mode, the compensation is cancelled in a middle point and is automatically resumed after executing the reference position return when G28/G30 is executed. Refer to #5003.2.

Note: when the middle point is the same with the end point of the previous movement code, the system defaults to cancel the compensation mode when the tool traverses to the reference point regardless of #5003.2 value.

Fig. 4-58 Cancel compensation vector temporarily in G28, G30

• G53 automatic return to reference position

In compensation mode, when G53 is executed, the system creates the offset vector which is vertical with the tool motion direction before the end point of the last block. When the tool moves to G53 position, the compensation vector is cancelled. The compensation vector is automatically recovered when the system executes the next movement code.

Fig. 4-59 G53 temporarily cancelling compensation vector

Chapter 4 Tool Nose Radius Compensation

• G71~G76 compound cycle; G92 fixed cycle, G84, G88 drilling cycle

When executing G71~G76, G92 fixed cycle, G84, G88 drilling cycle, the system does not execute the tool nose radius compensation and cancel it temporarily, and executes it in the next blocks of

G00, G01, G70, CNC automatically recovers the compensation mode.

Fig. 4-60 Cancel compensation vector temporarily in cycle pause

• G32, G34 thread cutting

The system does not execute the tool nose radius compensation and temporarily cancels the tool nose radius compensation in G32, G34, and it automatically recovers the compensation mode in G00, G01.

G90, G94

Compensation method of the tool nose radius compensation in G90 or G94:

- A. Each cycle path and tool nose center path are parallel to program path.
- B. Offset directions are the same in G41 and G42 as the following figure, and the system determines the tool compensation direction according to the UW direction of starting point and end point, and executes the tool compensation according to the direction in the cycle process.
- C. In having creating C tool compensation state, the system firstly cancels C tool compensation state in G90, G94, and executes the infeed tool to the intersection point of the tool nose center based on the tool nose center parallel programmed path, and at last to the positioning point. The system creates C tool compensation again in the next G00, G01.

D. After the system cancels the tool radius compensation, the imaginary tool nose point moves to the positioning point, and when the tool is in the cycle inner, the tool diameter exceeds the length of the rapid traverse of the first block, the overcut creates and No.255 alarms.

Fig. 4-62 Offset direction of tool nose radius compensation in G90

Fig. 4-63 Offset direction of tool nose radius compensation in G94

Fig. 4-64 G90, G94 radius compensation mode

G70

When G71 \sim G73 is executed, the system temporarily cancels C tool compensation. When G70 is specified again, the system automatically recovers the compensation mode. Because the system executes G71 \sim G73, it does not execute the radius compensation, there must be the finishing allowance in programming to avoid the overcut in roughing.

When G70 is cancelled, the radius compensation is cancelled firstly at the positioning point, a radius compensation is created at the first block of the cycle body, and a compensation is performed at the middle, and the radius compensation is cancelled in the course of returning to the positioning point. When G70 cycle is executed, when the compensation mode is not cancelled after the cycle ends, the system continuously executes the compensation in the positioning point, which causes the undercut of the finishing cycle in the last block, so, In G70 cycle, the last block should exceed one tool radius value of the workpiece in programming.

Chapter 4 Tool Nose Radius Compensation

Fig. 4-65 G70 radius compensation mode

4.2.7 Particulars

• Inside chamfer machining less than tool nose radius

At the moment, the tool inside offset causes an excessive cutting. The tool stops and No.261 alarm occurs when starting the previous block or chamfer moving. But the tool stops the end point of previous block when **Single** is ON.

Fig.4-66 inner corner machining less than tool nose radius

Machining concave less than tool nose diameter

There is an excessive cutting when the tool nose center path is opposite to program path caused by tool nose radius compensation. At the moment, the tool stops and No.257 alarm occurs when starting the previous block or chamfer moving.

Fig. 4-67 machining a grooving less than tool nose radius

Machining a inner sidestep less than 90°

When the system machines a inner sidestep less than or equal to 90° and the machining path length is less than the tool nose radius, there will be the too much undercut and No. 260 alarm occurs. At the moment, No.5008 Bit6 (CNS) sets whether the system alarms in the condition.

Fig.4-68 machining an inner sidestep less than 90°

• Corner motion

When two or more than movement vector in the end point of one block create, the tool moves to another vector from the vector linear, which is called the corner motion. When the single block is valid, the tool stops in the last vector.

When two vectors coincide, the system does not execute the corner motion and the second vector will be ignored. When the two-axis increments of the movement vector in the compensation level are less than the setting values of No. 5010(CLV), the second vector is ignored, but it is not ignored when the interpolation block is the arc.

Chapter 4 Tool Nose Radius Compensation

Fig. 4-69 corner motion

• Changing compensation value

(a) The system executes the tool change in the compensation cancel mode, the compensation value is changed. When the compensation value is changed in the compensation mode, No.5001 Bit4(EVR) can set whether the compensation value change is valid from the nest T code or the next buffer block.

Fig.4-70 changing compensation value

(b) Positive/negative compensation value and tool nose center path

When the compensation value is negative (-), G41 and G42 exchange in programming. When the tool center moves along the workpiece outer, it moves along the inner, and vice versa.

Note: The compensation value is equal to the offset value adding the wear value. When the compensation sign is changed, the tool nose offset direction changes but the imaginary tool nose direction does not change. So, do not change the compensation sign optionally.

• End point of programmed arc is not in the arc

In the radius compensation process, when the system uses IJK to specify the circle center and the end point of the arc is not in the arc, the system positions again the circle center position

specified by IJK, and confirms the circle center position according to the radius counted by IJK to execute the radius compensation. When the counted radius is too small not to reach the end point of the arc, No. 254 alarm occurs.

Note: At the moment, there is a difference between the counted arc and the specified in programming, and the function is sued to regulate the error of the radius out-of-tolerance in some range in programming.

Fig. 4-71 End point of programmed arc be not in the arc

Continuous 3 or more than 3 blocks non-movement code

In tool radius compensation process, when there are 3 or 3 blocks without movement code, the tool nose center reaches the end point of the last block and is vertical with programmed path position of the last, at the moment, which causes the overcut, and the programmer should pay more attention it.

General non-movement code :

- 1. M03S300 only have M, S, T, F, O, N codes
- 2. #100=3 non-NC statement (when 6000#5 SBM is set to 1)
- 3. G04 X10 pause
- 4. G00 only have G code and do not specify the position code
- 5. G01 U0 the infeed distance is 0
- 6. G01X100 only specify the absolute value which is same with that of the last block
- 7. G01Y10 only specify the axis in non tool compensation level
- 8. M98M99 statement for calling subprogram and subprogram return(the block has no axis increment code)
- 9. G66G67 statement for calling macro program and cancelling macro program call modal

10.; null block

In non-movement block, when there is a code to cancel the radius compensation, the system does not cancel the vector and execute the code in the vertical vector. It cancels the radius compensation vector when the system cancels the radius compensation in G28, G30, G53, it executes the code in the vertical vector in G50, G52, G32, G34, fixed cycle, multi cycle, drilling cycle and other codes.

When there are 3 or more than 3 blocks without movement code following the block used to create the tool radius compensation, the system does not immediately create the tool radius compensation but does it in the block following the non-movement code.

The system executes the above vertical before the last movement code when there is a optional symbol "/" in tool radius compensation. So, please do not use the optional block function in the tool radius compensation to avoid the overcut.

Chapter 4 Tool Nose Radius Compensation

When No.6000 Bit5 (SBM) is set to 1, the macro statement can stop in single block and is taken as the non-movement block in the tool nose radius compensation at the moment, which causes the abnormal path. It is suggested that No.6000 Bit5 (SBM) is set to 0 when the system uses the macro statement in the tool nose radius compensation mode in the course of normal machining.

Fig. 4-72 continuous 3 or more than 3 blocks of non-movement code

• Subprogram call and macro statement call in G code

In tool nose radius compensation mode, when the system specifies the code for calling the subprogram, it can execute the normal compensation, the compensation method of calling program is transferred to the subprogram which is to execute the corresponding compensation. When the system specifies G code in the radius compensation mode in the subprogram, G code is valid, at the same time, the system cancels the radius compensation mode when the subprogram does not end, the compensation mode is transferred to the called program which will continuously executes the corresponding compensation.

The code for calling subprogram and subprogram return has no movement code, it is taken as the non-movement block.

• Cutting inner of the whole circle

In the tool nose radius compensation, when the system machines the inner of the whole circle and the compensation direction is not changed, the overcut or undercut creates, at the moment, it determines whether it alarms based on No.5008 Bit5 (CNF). When Bit5 is set to 0, No.259 alarm occurs.

Fig. 4-73 overcut in machining inner of the whole circle

Inserting MDI operation in tool compensation

In MDI mode, the system does not execute the tool nose radius compensation. When the system specifies G41 or G42, the system determines No.5008 Bit4 (MCR). When Bit is set to 1, No.258 alarms. The system does not alarm and ignores the specified G41 and G42 when it is set to 0, When the system runs in AUTO mode in absolute code programming and the single block run stops to insert MDI mode, and then starts AUTO mode, at the moment, transfers the vector of starting point of the next block, and forms other vectors based on the next two blocks, the offset can be executed from PC, and the tool path is as follows:

When PA, PB, PC is programmed with absolute code, the single block run stops and the tool is moved in MDI after the block from PA to PB is executed. The vector VB1, VB2 are transferred to VB1' and VB2', VC1', VC2 of PB' \rightarrow PC and PC \rightarrow PD are calculated again.

But, the system can correctly execute the compensation following PC because the vector VB2 has not calculated again.

OPERATION

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chapter 1 Overview

Chapter 1 Overview

1.1 Operation Overview

GSK988TA is with the operation modes: Edit, Auto, MDI, Reference position return, MPG/Single step, Manual and DNC operation modes, etc.

• Editing the program

The operation is completed with the program editing function, and the edited program is saved in CNC memory, and the program can be corrected and rewritten. (About the details, refer to Chapter Four.)

• Auto running

Automatic running is to operate the machine based on the edited program. Once the program is edited into CNC memory, the program can run based on the program codes, and the operation is called running in Auto mode.

• **Manual data input(MDI)mode running:** On MDI page, after inputting the program, the program can run based on the program codes. And the operation is called as running in MDI mode.

• Reference position return

A CNC machine tool is provided with a fixed position for setting the position of the machine worktable. And the fixed position is called as the reference position. Normally, tool change or setting the coordinate system is performed at this position. After power on, the tool is moved into the reference position. Manual reference position return is to move the tool into the reference position by the switches and the buttons on the operation panel.

Fig. 1-2 Manual reference position return

Moreover, the tool can be moved into the reference position with the program code, and the method is called as the automatic reference position return.

• MPG feeding

The tool can be moved the distance corresponding to the rotation angle by rotating MPG. (See Section 5.4).

Manual operation

The tool can be moved along each axis by the switches on the machine operation panel, buttons or MPG.

(1) Manual (manual continuous) feed (refer to 5.2 for details.)

During the button is pressed, the tool can be continuously moved.

(2) Incremental feed (refer to 5.3 for details.) After the button is pressed, the tool is only moved for certain distance when the button is pressed once.

• **DNC running:** The program can be directly read from the external input/output equipment for running the machine; however, the program isn't saved into CNC memory, and the operation is called as DNC running (Refer to 6.3 for details.)

Chapter 1 Overview

1.2 Setting the System

The operator can set CNC by CNC host machine buttons and the normal setting is: the tool offset setting, CNC setting and the macro variable setting.

Tool offset setting: The tool has its own dimension (length, diameter). When the workpiece with certain shape is machined, the tool dimensions vary based on the different movement amounts. If the dimension data of the tools are set in advance, the tool path is automatically given by the same program even the different tools are used, so the workpiece shape specified by the program can be cut by any tool.

The data of the tool dimension are called as the offset amount (Refer to Chapter Seven for details.).

CNC setting: CNC setting includes setting the system, the coordinate, the system time and the system IP.

Macro variable setting: CNC system can support the various macro editing, while the variable required by the macro should be set here.

1.3 Display

Program display:

The content of the program currently being executed is displayed, which is shown in Fig. 1-4.

Coordinate display

The coordinate value of each coordinate system can be displayed the current tool position, and can be taken as the distance to go from the current position to the target position, which is shown in Fig.1-6. (About details, refer to Chapter 3.1: Position Display Page).

UTO RESET			AUTO RESE	т	
SOLUTE		PRG DATA	MESSAGE → HIS	STORY -> ALARM HISTORY	alarn tine
Х	0.0246	т 0000	ALAM 400	参数开关己打开	2014-12-03,13:51:35
		F O	O ALAM 450	参数已修改,请重新上电	2014-12-03,13:51:36
7		ר 100 הת/הוח 100 הת/הוח	O ALAM 522	X输机械坐标同步误差过大	2014-12-03,13:54:07
۷			@ ALAM 400	参数开关己打开	2014-12-03,13:56:10
		51 <u>6</u> 0 rev/min	@ ALAM 450	参数已修改,请重新上电	2014-12-03,14:19:54
3	И.ИИИИ		ALAM 522	X轴机械坐标同步误差过大	2014-12-03,14:21:30
-	0.0000	S2 0 0 rev/min	SALAM 400	参数开关己打开	2014-12-03,14:21:55
^		02	@ ALAM 450	参数已修改,请重新上电	2014-12-03,14:22:56
4			ALAM 522	X轴机械坐标同步误差过大	2014-12-03,14:29:5
NAME [00018]		NC INFO	O ALAM 6095	MDI文件第1行同步方式指令非法	2014-12-03,14:30:33
00018(精度拷机程序);	FED OVRI 188% HDL F X1	@ ALAM 6095	MDI文件第1行同步方式指令非法	2014-12-03,14:31:03
M3 S700;			@ ALAM 6095	MDI文件第1行同步方式指令非法	2014-12-03,14:36:05
60 X150 Z452;		RAP UVRI 50% PARI UNI 3	@ ALAM 400	参数开关己打开	2014-12-03,14:37:00
5 G99 G1 Z400 F0.2;		SPI OVRI 100% RUN TIME 49:58:38	[©] ALAM 400	参数开关己打开	2014-12-04,07:05:00
5 X62 Z340: V69 Z225		JOG. F 100% CUT TIME 00:00:00	😫 ALAM 450	参数已修改,请重新上电	2014-12-04,07:05:28
A08 7373.		鼎 7:13:13			· 7.1

Fig.1-5

Fig.1-6

Alarm display

When the fault occurs during running, the corresponding wrong codes and alarm message will be displayed, which is shown in Fig. 1-6. Please refer to *Appendix One* for the detailed explanation of the alarm message.

Display the machined workpiece number and the operation time

The machined workpiece number, the operation time and the cutting time can be displayed on the current position display page, which is shown in Fig. 1-7:

Fig. 1-7

1.4 System Host Machine

1.4.1 System Host Machine Panel

The screen size of GSK988TA is 10.4 inches and its appearance is shown in Fig. 1-8:

Chapter 1 Overview

Fig. 1-8

1.4.2 Button Definition

Button	Name	Function
RESET	Reset key	CNC reset, feed, output stop and so on
^C X ^Y Z ^L F ¹ 4 ¹ 5 ^{SP} 6	Address/	Address input, digit input, symbol input, pressing shift
M ^K S ^J T ¹ [#] 2 ³	sign key	key to switch addresses or symbols

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Button	Name	Function
SHIFT	Shift key	Switch the double-address key, double-symbol key, address symbol key and digit address key. Pressing the shift key and it light is ON. Press the address key and the input is the upward address; it combined with the cursor key can select a block
INPUT	Input key	Confirm the data input and line feed during editing the program
CHANGE	Change key	Switch message/display, Tab key function, fast shortkey with other keys when editing programs
BACK SPACE	Backspa ce key	Delete the characters before the cursor
CANCEL	Cancel key	Cancel the current operation
DELETE	Delete key	Delete the character after the cursor
	Cursor move- ment key	Control the cursor left/right/upward/downward
	Page key	Switch the page in the same display interface

Chapter 1 Overview

Button	Name	Function
		POSITION press the function key to switch to the
		position display set.
		PROGRAM
		press the function key to switch to the program set.
		SYSTEM
		system set.
POSITION PROGRAM SYSTEM SETTING		SETTING press the function key to switch to the
	Function	setting sets.
MESSAGE GRAPH HELP		MESSAGE
		message set.
		GRAPH
		graph set.
		Custom set.
		HELP
		set.

Button	Name	Function
	Software keys	After using function keys to switch page set, use the corresponding soft key to display the current page set's some sub-page content or input in the current page. GSK988TA/TB's 10 soft keys are at the bottom of the screen, which is shown below.

1.4.3 Key Definition on Machine Operation Panel

State indicators and key functions on GSK988TA's machine panel are defined by the PLC program (ladder). The state indicators and key functions described in the user manual are based on GSK988TA ladder. Please refer to the machine tool manufacture's user manual if there is difference.

State indicator:

	Each axis reference position return end indicator lamp	RUN	Running indicator lamp
◯ ALM	Alarm indicator lamp	◯L1~L5	Self-defined indicator lamp
	Gear/tool location indicator lamp		

Button definition

Button	Name	Function	Operation mode when the function be valid
FEED HOLD	Feed hold key	Program, MDI code operation pause	Auto mode, MDI mode, DNC mode

Chapter 1 Overview

Button	Name	Function	Operation mode when the function be valid
CYCLE START	Cycle start key	Program, MDI code running start	Auto mode, MDI mode, DNC mode
30,	Feedrate override button	Adjusting the feedrate or the manual feedrate	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
80 90 100 110 50 50 50 50 50 50 50 50 50 5	Spindle override key	Spindle speed adjustement (the spindle speed analog control mode is valid)	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
T.MAG. CW	Manual tool change key	Manual tool change	Reference point return mode, MPG mode, Single step mode, Manual mode
	Position record key	Record the current coordinate position and input the tool offset	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
• JOG	Jog switch key	The spindle jog state ON/OFF (The concrete use is referred to the standard ladder explanation or machine manufacturer's ladder description)	MPG mode, Single step mode, Manual mode
	Lubrication switch key	Machine lubrication ON/OFF	Auto mode, MDI mode, Edit mode, Reference
	Cooling ON/OFF key	Cooling ON/OFF	mode, Single step mode, Manual mode, DNC mode
СНИСК	Chuck control key	Chuck clamping/releasing	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode

Button	Name	Function	Operation mode when the function be valid
S. CW S. STOP S. CCW	Spindle control key	Spindle rotation (M4) Spindle stop (M5) Spindle rotation (M3) Spindle speed position switch Spindle exact stop(spindle orientation)	MPG mode, Step mode, Manual mode
RAPID	Rapid movement key	Rapid traverse speed/feedrate switch	Auto mode, MDI mode, Manual mode, DNC mode
Image: space	Manual feed key	Each axis positively/negatively moves in Manual, Single Step mode	Reference point return, Step mode, Manual mode
	MPG control axis selection key	Each axis selection in MPG mode Note: the key in MPU08 is valid, but MPU09's MPG selection key is on the external MPG device	MPG mode
	MPG/Single increment	MPG movement increment 0.001 mm /0.01 mm /0.1 mm /1 mm (note: the function key is valid only in MPU02A, but MPU02B's MPG times selection key is on the external MPG device.)	MPG mode
₩ F0 ₩ 25% ₩ 50% ₩100%	selection and rapid override selection key	Movement amount of each step 0.001 mm /0.01 mm /0.1 mm / 1 mm	MPG mode(single step increment operation)
		Rapid override Fo, F25%, 50%, F100%	Auto mode, MDI mode, Reference point return mode, Manual mode, DNC mode

Chapter 1 Overview

Button	Name	Function	Operation mode when the function be valid
SINGLE	Single block switch	Whether the single block running is valid is controlled by the key, When the button indicator lamp is ON, the single block is valid.	Auto mode, MDI mode, DNC mode
SKIP	Block skip switch	Whether the skip code "/" of the program is valid is controlled by the key, when the button indicator lamp is ON, the skip function is valid	Auto mode, MDI mode, DNC mode
MACHINE	Machine locked switch	When the machine is locked, the machine locked indicator is ON and each axis' output is invalid	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
MST CKD M.S.T. LOCK	Miscellaneous function locked switch	The key is for switching the status of the miscellaneous function locked, M, S, T function output is invalid when the miscellaneous function is locked.	Auto mode, MDI mode, DNC mode
DRY	Dry run switch	When the indicator lamp is ON, dry run is valid. Machining program is executed/MDI block executes dry run.	Auto mode, MDI mode, DNC mode
OPTIONAL STOP	Optional stop switch	When the optional stop is valid, the indicator lamp is ON. When M00 exists in the program, the block stops after running completes.	Auto mode, MDI mode, DNC mode
PROG. RESTART	Program restart switch	The program restart is valid, the program restart indicator is ON, the program restarts at the place where it stops previously.	Auto mode
EDIT	Edit mode key	Enter Edit mode key	Edit mode
AUTO	Auto mode key	Enter Auto mode key	Auto mode
MDI	MDI mode key	Enter MDI mode	MDI mode

<u>魚</u>Ր℠州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Button	Name	Function	Operation mode when the function be valid
REF. RETURN	Return to reference point mode selection key	Enter the reference point return mode	Reference point return mode
MPG	Step/ MPG mode key	Enter single step or MPG mode(one of them is selected by the parameter)	Step/MPG/Manual mode
MANUAL	Manual mode key	Enter manual mode	Manual mode
DNC	DNC mode selection key	Enter DNC mode	DNC mode
	Emergency stop switch	After the key is pressed, the system enters the emergency stop status, all output are OFF.	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
POWER DFFF	Power supply ON/OFF switch	System power ON/OFF switch	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
	Program protect switch	Protect program from being changed at will	Auto mode, MDI mode, Edit mode, Reference point return mode, MPG mode, Single step mode, Manual mode, DNC mode
	External feed hold key	Program, MDI code run pause	Auto mode, MDI mode, DNC mode

Chapter 1 Overview

Button	Name	Function	Operation mode when the function be valid
	External cycle start key	Program, MDI code run start	Auto mode, MDI mode, DNC mode
	MPG	Control the machine run(note: with it for MPU08, without it for MPU09)	MPG mode

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chapter 2 Power on/off and Safety Protection

2.1 Power-on

Before GSK988TA power on, please confirm:

- 1. CNC and the machine are normal in the appearance;
- 2. The power supply voltage complies to the requirements of the manufacturer;
- 3. The connection is correct and firm.

After GSK988TA is powered on, the page is shown in Fig. 2-1:

Then, GSK988TA should be self-checked and initialized. After self-checking and initializing, the page is displayed the current position (dual-channel), which is shown in Fig. 2-2:

2.2 Power-off

Confirm the followings before power-off:

- 1. All movable parts of the machine should be stopped;
- 2. The miscellaneous function (such as the spindle, the water pump) is off;

3. CNC power supply should be cut off firstly, and then the machine power supply is cut off. Note: 1. Turn on the power, again after power off for 20 seconds.

2. About the operation of cutting the machine power supply, please refer to the user manual from the machine manufacturer.

2.3 Overtravel Protection

To avoid the machine damage due to the each axis overtravel, the machine must be adopted the overtravel protection measures.

The limit switches should be respectively installed on the maximum stroke position in the positive and negative directions of each axis on the machine. When the overtravel occurs, the limit switch is operated, the system decelerates till stops, and the overtravel alarm occurs.

During automatic running, when one axis is touched the limit switch, all axes along which the tools are being moved should be decelerated and stopped, and the overtravel alarm occurs.

During manual operation, just the axis in which the tool touching the limit switch is decelerated and stopped, the tool is still moved along other axis.

The method of clearing "the overtravel" is: In manual mode, the worktable is moved reversely (like the positive overtravel, it is moved negatively, vise versa), and moved away from the limit switch. The system resets and issues the alarm.

Note: The method of the releasing the machine overtravel is different with that introduced in the manual; about the detailed operation, please refer to the user manual of the machine manufacturer.

2.4 Overtravel Protection of Stored Stroke

GSK988TA system provides three stored stroke check areas: The areas in which the tools can't enter can be specified as the stored stroke check 1, the stored stroke check 2 and the stored stroke check 3, which is shown in Fig.2-3:

Fig.2-3

When the tool exceeds a stored stroke limit, an alarm is displayed and the tool is decelerated and stopped. When the tool enters a forbidden area and an alarm is generated, the tool can be

Chapter 2 Power on/off and Safety Protection

moved in the reverse direction from which the tool comes.

Stored stroke check 1: Parameters (Nos. 1320, 1321 or Nos. 1326, 1327) set the boundary. Outside the area of the set limits is a forbidden area. The machine builder sets this area as the maximum stroke.

Stored stroke check 2 (G22 G23): Parameters (Nos. 1322, 1323) or codes set the boundaries. In case of programming, a G22 code forbids the tool to enter the forbidden area, and a G23 code permits the tool to enter the forbidden area. Each of G22 and G23 should be executed independently of another codes in a block. About the details, refer to G codes introduction.

Stored stroke check 3: Set the boundary with parameters No.1324 and 1325. The area inside the boundary becomes the forbidden area.

Forbidden area overlapping: Area can be set in piles (refer to the following Fig. 2-4). Unnecessary limits should be set beyond the machine stroke.

Effective time for a forbidden area: Each limit becomes effective after the power is turned on and manual reference position return or automatic reference position return by G28 has been performed. After the power is turned on, if the reference position is in the forbidden area of each limit, an alarm is generated immediately.

Time for displaying an alarm: Parameter BFA (bit 7 of No. 1300) selects whether an alarm is displayed immediately before the tool enters the forbidden area or immediately after the tool has entered the forbidden area. The parameter is only valid to the stored stroke 1 rather than "the software limits 2 and 3".

Releasing the alarms: When the tool has become unmovable in the forbidden area, the tool is moved reversely (like the positive overtravel, it is moved negatively, vise versa) out of the forbidden area in manual mode, and the reset key is pressed to clear the alarm; if the setting is wrong, correct it and perform the reference position return, again.

Note: In setting a forbidden area, if the two points to be set are same, the area is as follows:

- 1. When the forbidden area is stored stroke check 1, all areas are forbidden areas.
- 2. When the forbidden area is stored stroke check 2 or stored stroke check 3, all areas are movable areas.
- 3. When 1300.7=1 and the alarm occurs, the machine coordinate is outside the forbidden area, the alarm can be directly cancelled by pressing the resetting key.
- 4. When 1300.7=0, and the alarm occurs, the machine coordinate is inside the forbidden area, the tool is moved outside of the alarm area, and then the alarm can be cancelled by pressing the resetting key.
 The software limit function is invalid when the stored stroke check 1 is set and the coordinate set value
- of the positive boundary is less than that of the negative boundary.

<u>魚</u>Ր゚州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

2.5 Emergency Operation

During machining, some unexpected consequence may occur due to the user programming, operation and the product fault, GSK988TA operation must stop immediately. In this chapter, the measures are taken by GSK988TA in emergency; about the measures taken by the CNC machine tool, please refer to the user manual from the machine builder.

2.5.1 Reset

When GSK988TA is abnormally output and the coordinate axis is abnormally operated, pressing

key makSe GSK988TA in resetting status;

- 1. All axis movement is decelerated and stopped;
- 2. M and S function output is invalid;
- 3. Automatic running stops and modal function remains.

Note: After **is pressed**, whether automatically switch off the signals of the spindle CW/CCW rotation, the lubrication and the cooling, etc. is set by the parameters.

2.5.2 Emergency Stop

During the machine running, the emergency stop button (the external emergency stop signal is valid) is pressed in the dangerous or in the emergency situation, CNC takes the emergency stop measures, and the machine movement is stopped immediately, all output (such as the spindle revolution and the coolant, etc) are all switched off. The emergency stop alarm is released after releasing the emergency stop button, CNC enters the resetting status.

Note 1: Please confirm the trouble has been removed before the emergency stop alarm is released;

Note 2: The electric shock can be reduced when the emergency stop button is pressed before power-on/off.

Note 3: After the emergency stop alarm is released, the reference position return should be executed, again to guarantee the correctness of the coordinate position.

2.5.3 Feed hold

During the machine running, the feeding can be hold after pressing **FEED HOLD** key. Please pay attention that the function can't stop the feeding immediately during thread cutting and the cycle code executing.

2.5.4 Cutting off the Power Supply

During the machine running, in danger or in the emergency situation, the machine power supply must be cut off immediately to avoid the accident. Please pay attention that the reference position return should be executed, again if the coordinate displayed by CNC doesn't comply with the actual position after power off.

Chapter 3 Display Page

Chapter 3 Display Page

This chapter will introduce the switch of the subpages and the relation between the operation input and the software keys and the detailed operation method.

GSK988TA system MDI panel includes 8 function keys, like position, program and setting, etc and each function key is corresponded to one page set, and each page set also includes many subpages and the operation software keys. The following content explains how the operation software is changed after pressing each function keys.

3.1 Position Display Page Set

After the system is powered on, the initial display page is the position one, the position page without loading the program in Auto mode and during resetting status is shown in Fig.3-1:

				PRG DATA		
Х	Ø.	024	6	Т	0000	
z	Ø.	.005	i7	F	100	mm/min mm/min
С	Ø.	. 000	10	S1	0	0 rev/min 0%
Α	Ø.	.000	1 0	52		0 rev/min 0%
PRG NAME [00018]				NC INFO		
1 00018(精度拷机程序)	;			FED OVRI	100% HDL.	F X1
2 M3 5700; 3 G50 X150 Z452;				RAP OVRI	50% PART (CNT 3
4 G0 X50;				SPI OVRI	100% RUN T	IME 49-58-38
6 X62 Z340;				100 E		INE 00.00.00
7 X68 7325: JUG. F 100% CUT IME 00:00:00 ₱ 7:17:02						
ABS REL	MAC	ALL		MODAL	SET REL	CLEAR >

Fig.3-1

Note: The content in the page may be different based on the different configurations, the figure and all contents introduced below are according to the standard two-axis turning machine configuration.

POSITION

Press function key to enter the position page set; it includes the subpages of the absolute coordinate, the relative coordinate and the machine coordinate, and the content displayed in each page can be checked by pressing the corresponding software key, which is shown in Fig.3-2.

Fig.3-2

3.1.1 Absolute Coordinate Display

<u>惫гё州数控</u>

On the position page set, press software key to switch into the absolute coordinate display page. In Auto mode, the running status is shown in Fig.3-3:

AUTO RESET		PRG DATA
Х	0.0246	5 ^T 0000
z	0.0057	F Ø mm/min 100 mm/min
С	0.000	S1 0 0 rev/min 0%
Δ		S2 0% 0%
PRG NAME [00018]		NC INFO
1 00018(精度拷机程序) 2 M3 S700; 3 G50 X150 Z452; 4 G0 X50;	;	FED OVRI 100% HDL. F X1 RAP OVRI 50% PART CNT 3
5 G99 G1 Z400 F0.2; 6 X62 Z340; 7 X68 7325:		SPI OVRI 100% RUN TIME 49:58:38 JOG. F 100% CUT TIME 00:00:00
ARS REI	MAC ALL	

Fig.3-3

On the left top corner, the current operation mode is Auto mode. During running, linear cutting..... is popped up.

The coordinate display area is displayed that each axis coordinate value of X and Z, etc is the absolute position of the current workpiece coordinate system on which the tool is.

Processing data:

T: Current tool number and the tool offset number.

Actual rate F: During actual machining, the actual machining rate after the feedrate override calculation;

Programmed rate: In the program, the rate is specified by F code;

The spindle actual rate S: The spindle speed is the feedback of the spindle encoder, and the spindle actual speed can be displayed only after the spindle encoder is installed;

The programmed spindle speed S: In the program, the spindle speed is specified by S code;

Processing data:

T: Current tool number and the tool offset number.

Actual rate F: During actual machining, the actual machining rate after the feedrate override calculation;

Programmed rate: In the program, the rate is specified by F code;

The spindle actual rate S: The spindle speed is the feedback of the spindle encoder, and the spindle actual speed can be displayed only after the spindle encoder is installed;

The programmed spindle speed S: In the program, the spindle speed is specified by S code;

Comprehensive message:

Chapter 3 Display Page

Feedrate override: The override selected by the feedrate switches; Rapid override: The override selected by the rapid override switches; Spindle override: The override selected by the spindle override switches; Manual override: The override selected by the manual override switches; MPG override: The current MPG override;

Number of the machined work pieces: The machined workpiece number is added one after M code set by M02, M30 or parameter 6710 is executed by the program and the execution is completed.

Cutting time: The execution time of automatic running for one time doesn't include the stop and feed hold time; Timing starts from 0 after automatic running starts each time, the time unit is hour, minute, second in turn;

Running time: All execution time of the system in Auto mode doesn't include the stop and feed hold time and it is the accumulation of the cutting time;

G function code: The modal value of G code of each group;

Press modal and Comprehensive message software keys to switch between the modal and the comprehensive message.

The program display area: Display the currently being executed program. And the block displayed in green color is the currently being executed one.

3.1.2 Relative Coordinate Display

On the position page set, press **software key to switch into the relative coordinate** display page, which is shown in Fig.3-4. Then, the relative coordinate value is displayed in the coordinate display area. The displayed U and W coordinate values are the current position relative coordinate ones. U and W coordinates can be cleared during stopping and resetting status.

REL

AUTO RESET		PRG	а пата		
U	0.024	16	T	0000	
W	0.005	i7	F	100	mm/min mm/min
н	0.000	10	<u>S1</u>	0	0 rev/min %
Α	0.000	<u>10</u>	<u>52</u>	0	0 rev∕min %
PRG NAME F00018]		NC	INFO		
1 00018(精度拷机程序);	FE	D OVRI	100% HDL.	F X1
2 M3 S700; 2 C50 V150 7452;		DA			п э
4 G0 X50;		T/A	F UVINI	JUA FART G	11 V
5 G99 G1 Z400 F0.2;		SP	I OVRI	100% RUN TIN	E 49:58:38
7 X68 7325:		JO	G. F	100% CUT TIM	E 00:00:00
					1:19:16
ABS REL	MAC ALL		MODAL	SET REL PA	CLEAR IRT CNT >

Fig.3-4

3.1.3 Machine Coordinate Display

MAC

On the position page set, press **Example** to switch into the machine coordinate display page. The machine coordinate system is set by reference position return, and the page is shown in Fig.3-5:

	O RESET	PRG DATA			
X	0.0246	T	000	0	
7	9.0057	F	 10		nm∕min nm∕min
		<u>S</u> 1	0	0 ra 0%	ev/min
		<mark>5</mark> 2	0	0 re 0%	ev∕min
	U . UUUU ME [00018]	NC INFO			
1	00018(精度拷机程序); M3 S700;	FED OVRI	100% HDL	. F	X1
3 4 5	G50 X150 Z452; G0 X50; C99 C1 Z499 E0 2:	RAP OVRI	50% PAR	T CNT	3 •58•38
6 7	X62 Z340; X68 7325:	JOG. F	100% CUT	TIME 00	:00:00
			1	- 助 7	:19:56
	ABS REL MAC ALL	MODAL	SET REL	PART C	NT >

3.1.4 Comprehensive Coordinate Display

On the position page set, press software key to switch into the comprehensive coordinate display page. Then, the comprehensive coordinate values displayed on the interface top include the absolute coordinate, the relative coordinate, the machine coordinate and the distance to go, and the page is shown in Fig.3-6:

ŀ		RESET						
AE	3\$		REL		MAC		REM	
)	x	0.0246 mm	U	0.0246 mm	x	0.0246 mm	x	0.0000 mm
2	z	0.0057 mm	ω	0.0057 mm	z	0.0057 mm	z	0.0000 mm
(C	0.0000 mm	н	0.0000 mm	с	0.0000 mm	с	0.0000 mm
,	Ą	0.0000 mm	A	0.0000 mm	A	0.0000 mm	A	0.0000 mm
PF	RG NAME	F F00018]				NC INFO		
	1	00018(精度拷机)	程序):			EED OVEL 10		E V1
	2	M3 S700;	_,,,,				JUA HUL.	F AI
	3	G50 X150 Z452;				RAP OVRI 5	50% PART	CNT 3
	4	G0 X50;				SPI OVRI 10	NAY PUN	TIME 49-58-38
	5 400 FU.2; 6 X62 7340:				SIT OWNER IN		111L 40.50.50	
	ž	X68 7325:				JOG. F 10	00% CUT	TIME 00:00:00
围. 7:21:07								
	A	BS REL	MAC	ALL		MODAL	SET REL	CLEAR >

Fig.3-6

SET REL

software key to set the relative

Chapter 3 Display Page

3.1.5 Relative Coordinate Setting

On the position display page set, press coordinate, which is shown in Fig.3-7:

Fig.3-7

Then, the relative coordinate value of each coordinate axis can be set. The setting steps are:

SET REL software key to input the relative coordinate (1) During resetting, press axis, like the relative coordinate value U in the above figure;

to select the coordinate axis to be set, and the axis can be (2) Press or input;

INPUT (3) Input the relative coordinate values and press key to complete setting; the cursor is moved into the next axis and the relative coordinate of the next axis can be set. If there is no axis after the current one, setting the relative coordinate is completed.

3.1.6 Switch between the Modal and the Comprehensive Message

	MODAL		NC INFO						
On the position page set, press		and		to	switch	between	the		
modal the comprehensive message, the modal display page is shown in Fig.3-8:									

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation] NC INFO FED OVRI 100% HDL. F X100 RAP OVRI 100% PART CNT 80 SPI OVRI 100% 00:10:00 RUN TIME 100% JOG. F CUT TIME 00:00:50 9:18:19 CLEAR PART > MODAL SET REL CNT

3.1.7 **Clearing the Machining Workpiece Number**

CLEAR PART CNT to clear the current number of the machined On the position page set, press workpiece.

Program Page Set 3.2

PROGRAM

Press function key to enter the program page set. It mainly includes the local content, MDI program, the current/next display; if the U disc is inserted, the U disc content is also displayed. Search the displayed content of each page by pressing the corresponding key as Fig.3-9.

3.2.1 Local Content and U Disc Content

Local content

LOCAL

software key to display the program content in the system. The programs Press in the local content can be loaded, opened, copied, pasted, created, saved as, deleted, renamed and searched, etc.

The local content in the program is shown in Fig.3-10:

Chapter 3 Display Page

MDI	RESET								
PROGRAM ->	LOCAL DIRECT	ORY							
prog acoun	ts: 20/	size	(byte): 1,60	3, 381		free(byte)	: 34,370,04	8	
name	size(byte)	modified	time	1	name	00018			
00000	788	2014-09-2	28,08:10:08		0001	Ⅰ0/糖産拌却	史 広)		
00001	1,598,328	2014-11-1	2,21:38:01		000	0 (111) 2 75 1/4	τ Ε /Γ		
00002	52	2014-09-2	28,08:10:08		M3 3	5700			
00003	54	2014-09-2	28,08:10:08		G50	X150 Z452			
00004	130	2014-09-2	28,08:10:08		GØ)	(50			
00005	232	2014-11-2	4,08:11:15		600	C1 7400 E0	2		
00006	63	2014-09-2	28,08:10:08		1000	d1 2400 10	.2		
00007	55	2014-09-2	28,08:10:08		X62	2340			
00008	91	2014-09-2	28,08:10:08		X68	Z325			
00009	110	2014-09-2	28,08:10:08		Z310)			
00010	150	2014-09-2	28,08:10:08		X80				
00011	111	2014-09-2	28,08:10:08		7900				
00012	137	2014-09-2	28,08:10:08		2296	,			
🔍 00018	252	2014-09-2	28,08:10:08		X90				
00020	35	2014-12-0	3,13:09:26		Z270)			
00888	223	2014-11-2	4,08:34:02		X80	7250			
00988	835	2014-09-2	28,08:10:08		7000				
00989	52	2014-09-2	28,08:10:08		2230	,			
00990	298	2014-09-2	28,08:10:08	-	G2 >	(75.94 Z176	.52 R90		
								戰 5 12:16	:39
LOCA	LUSB	MDI	CUR/NEXT	PROC REST	GRAM Fart	NEW	LOAD	OPEN	>

Fig.3-10

On the page top status message display area, the running mode and status, on which the system is, are displayed on the display area; the total number of the program, the total used space and the remaining space of all the programs in the current system are displayed below.

In the list, the program list of the current program and the size of each program and the latest rewritten date are displayed. Among them, the program with the green background is the selected one, like O0043 program in the above figure. While the program of the red font and marked with the channel is the one which should be loaded into the position display page of the channel and can be executed, like O8888 and O0043 programs in the above figure.

• Content in the U disc

When the system is with the U disc, "the content of U disc" software key is also displayed in the

page meanwhile, which is shown in Fig.3-11. Press USB software key, CNC program content in "NCPROG" file of the U disc is displayed in the window. The files in the U disc content can be input and output.

MDI	RESET							
PROGRAM	-> USB DIRECTORY	(U:/NCPROG	;)					
prog acou	unts:4							
name	size(byte)	modified	time	nar	e 00000			
00000	788	2011-10-2	21,10:11:32	00	100(高温箱拷	机程序)		
00004	130	2011-06-0	07,10:02:08	CE	V200 7E00	,,,,,		
00008	91	2011-06-0	07,10:02:08	GO) X300. Z500	•		
00012	137	2011-06-0	07,10:02:08	G9	3 G00 X-100.	Z-200.		
				G9) U-10. W-20	0. F500.		
				G9) U-10. Z-30	0. R-2.5 F	350.	
				CO	A XQA 71AA			
				00	DA 50.2100.			
				67	K0.5			
				G74	I X0. W-10.	P30000 Q50	000 R1.5	
				F3	90.			
				GØ) Z190.			
				67	112 5 RA 5			
				07	D10 0E0 U1			
				67		. WI. F250	-	
				NI) GOO U-50.			
				N2) G3 X60. Z1	80. IO. K-	10. F150.	
				N3	G2 U5. Z15	5. R200. F	200.	
							閲 ≶ 12:17	:36
LOC	AL USB	MDI	CUR/NEXT	PROGRAM	NEW	LOAD	OPEN	>

Fig.3-11

<u>魚</u>г∺州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3.2.2 **MDI Program**

PROGRAM

function key to enter the program page set. Press MDI soft key to enter the Press MDI program display page. In MDI mode, input up to 10-line programs in the MDI program input box, as shown in Fig.3-12:

	MDI	RESET		
	PROGRAM	-> MDI		ABSOLUTE
	1 (G0 X100 Z100 ;		X 351.8769
				Z 0.0000
				U 351.8769
				H 0 0000
				MACHINE
	MODAL	600 697 698 621 640 625 622 680 687 6	G18	X 351.8769
	G 	G13.1 G64 G50.2 G54		Z 0.0000
	S	0 rev/min		
	F	0 mm/min M		T 0000
				■ 参 12:19:47
	LO	CAL USB MDI CUR/NEXT PROGRAM RESTART	DEL	BLK CLEAR
		Fig.3-12		
		DEL BLK	ام مد م	CLEAR DEL BLK AND ALLAND
in widi mode, the	syste		and	
the NC code which	ine tl	he cursor is in. Press	lear	all NC codes in the MDI program
input box				

3.2.3 Current/Next Block

input box.

PROGRAM

CUR/NEXT

function key to enter the program page set and press Press software key to display the current being executed block and NC code of the next block, which is shown in Fig.3-13:

AUTO RESET			
PROGRAM -> CURRENT/NEXT BLOCK	ſ	ABSO	LUTE
current	next	x	351.8769
		Z	0.0000
		RELA	IT I VE
		U	351.8769
		W	0.0000
		MACH	IINE
		v	351 8769
		`	001.0100
		Z	0.0000
		-	0000
		1	0000
			₫ 🏂 12:21:47
LOCAL USB MDT	CUR/NEXT PROGRAM		
	RESTART		

Chapter 3 Display Page

3.2.4 Program Restart

PROGRAM Press t	o enter the program page set and then press the	soft key RESTART to enter the
program restart state of	display page.	
	AUTO RESET	
	PROGRAM -> PROGRAME RESTART [Disable]	UTE

-NOUNAM -Z ENOUNAME NEGTANT LDTS	abiej	HDOOLO	
χ target position	restart infomation	x	351.8769
	М	z	0.0000
Z		RELATIV	/E
		U	351.8769
χ dist to go	S	l W	0.0000
7	Т	MACHIN	
2		x	351.8769
1 00018(精度拷机程序);		z	0.0000
2 M3 5700; 3 G50 X150 Z452;		тО	aaa
4 GU X50; 5 G99 G1 7400 F0 2-			10-00-50
		Q1 8	> 12:22:58
LOCAL USB MDI	CUR/NEXT PROGRAM RESTART LOCATE	N E NO.SEARCH N	BLOCK 0.SRH.

3.3 System Page Setting

SYSTEM

Press function key to enter the system page set, and it mainly includes the subpages of the parameter, the pitch error compensation, the system message, the file management and the ladder diagram, etc. The content displayed on each page can be checked by pressing the corresponding software key and its software layer structure is shown below:

<u>惫г[⊷]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3.3.1 Parameter Setting

On the system page set, press

software key to enter the parameter setting

_ _

interface, which is shown in Fig.3-16:

AUTO	RESET	-							
SYSTEM	-> PARAM	1ETER							
0000			SEQ			INI			-
	0	0	0	0	0	0	0	0	
0123	<mark>BPS</mark> 115200								
0138		OWN							
	0	0	0	0	0	0	0	0	
0930						MODBUS	NDSVR	RMEN	
	0	0	0	0	0	0	0	1	
1001								INM	
	0	0	0	0	0	0	0	0	
1002					AZR		DLZ		
	0	0	0	0	0	0	0	0	
1004	IPC	RPR					ISC		
	0	0	0	0	0	0	1	0	
1005					HJZx		DLZx	ZRN×	
	X 0	0	0	0	1	0	0	1	
	Z 0	0	0	0	1	0	1	1	•
0000	*-*-:	SEQ-*-*	- INI - *-	*					
								戰 5 12:26	:08
Р	ARAM	PITERROR	SYSTEM INFO	MEMORY DEVICE	PLC	GSKLink	SEARCH GROUP	SEARCH PAR_ID	

PARAM

The page is displayed the detailed message of the user parameters. On the page, the system parameters can be set and rewritten, the parameters currently set by the user can be operated the backup and the parameter can be restored into the system default one or the user backup one.

The parameter can be set in MDI mode and the parameter switch is ON and the operation

authority level is equal to or higher than level [3]. The parameter to be rewritten can be set by											
,		and	$\hat{\Gamma}$	keys; or press	SEARCH PAR_ID	or	Р	SEARCH PAR_NAME	softw	are keys t	to input
the para	meter	seque	nce n	number to be sele	ected, and then	pre	SS .	OK	so	ftware key	ı, finally
											INPUT

move the cursor to the parameter position. Like #0000 parameter in the above figure. Press key to make the selected parameter can be rewritten, like #0000 parameter in the following Fig.3-17:

Chapter 3 Display Page

Fig.3-17

Press the numerical value key to input the digits of 8 bits in binary system, and then press

INPUT

key to confirm the setting is completed; when the length of the input value isn't 8 bits, 0 is supplied in high bit;

Moreover, the bit parameter can be set based on the bits:

(1) On the parameter setting page, the parameter to be set is selected by the keys

(2) The parameter bit to be rewritten can be selected by

(3) key is repeatedly pressed, the parameter bit is switched between 0 and 1, and the value of the parameter bit is rewritten.

(4) Move the cursor to complete setting.

The other parameters to be set are selected by

and

Setting method of the parameters of the numerical value is similar with that of the parameters of bit type:

<u>魚</u>Г°州数控

(2) Press

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

INPUT

key to make the selected parameters modifiable.

(4) Select the other parameters to be set b

E		企	and	$\hat{\Gamma}$	kevs
,	,		and		keys.

software key to enter the pitch error compensation

- Note 1: After the system parameters are rewritten, some parameters become valid immediately, while some parameters become valid after the system is powered on, again. About the details, refer to GSK988TA parameter introduction.
- Note 2: The parameter setting can be rewritten in MDI mode and the parameter switch is ON and the operation authority level is equal to or higher than level [3].

3.3.2 Pitch Compensation Page

PITERROR

On the system page set, press page, which is shown in Fig.3-18:

MDI RESET SETTIN No value No. value No. value No. value 0000 X0 0001 0002 0003 Ĥ 0 0 0004 Й 0005 A 0006 Й 0007 Ø 0008 0010 0011 0 0009 0 0 0015 0012 0013 0014 0 0 0 0 0016 0017 0018 Ø 0019 Ø Ø Ø 0020 0 0021 Ø 0022 0 0023 0 0024 0026 0027 0 0 0025 0 0 0028 Ø 0029 A 0030 Ø 0031 Ø 0032 0033 0034 0035 Й Й Й Й 0036 0037 0038 0 0039 0 0 0040 0042 0043 0041 0 0 Ø Ø 0044 0045 0046 0047 0 0 Ø Й 0048 0049 0050 0 0051 0 0 0052 0053 0054 0055 Й Ĥ 0 0 0056 Й 0057 0058 ß 0059 Ø A 戰 12:41:51 MEMORY SYSTEM INFO PARAM PITERROR PLC GSKLink SEARCH

On the page, the user can check and set the pitch error compensation value corresponding to each screw pitch number.

On the pitch error compensation page, the compensation value of the pitch error compensation

To realize the multi-level operation authority management, like the development maintenance, the machine design and the equipment management, etc, GSK988TA/TB CNC system sets 5 level operation authority level, 1 is the highest, 5 is the lowest:

- Level 1: The development level with the system software maintenance authority;
- Level 2: The machine manufacturer level includes PLC program editing, the screw pitch error compensation data input and power off in the set time, etc.
- Level 3: (The user) equipment management level includes rewriting the parameter, editing the part program and editing the tool compensation data, etc;
- Level 4: The machine operation level includes editing the tool compensation data and selecting the part program (that is to say: the tool setting can be operated the part program for automatic running can be selected), the parameters can't be rewritten and the part program can't be edited;
- Level 5: Operation limit level, without the operation password (the operation password cancel status), the parameters can't be rewritten, the part program can't be edit, the cutter compensation data can't be edit, the part program can't be selected (that is to say: the

tool setting operation is invalid, only the current program of the system can run). The manual, MPG, zero return, MDI running and automatic running can be operated, and some files of the system can get backup, while they can't be downloaded.

Note: CNC files is uploaded into PC rather than downloaded into CNC internal.

The operation list of operation functions about the operation authority level.

Operation authority level Operation function	Level 1 (Development)	Level 2 (Machine tool manufacturer)	Level 3 (Equipment management)	Level 4 (Machine operation)	Level 5 (Limit operation)
System software upgrade	105	1 63	1 5	165	100
Setting power off in the set time	Yes	Yes	No	No	No
Editing, downloading and uploading PLC program	Yes	Yes	No	No	No
Inputting the pitch error compensation data and downloading the pitch error compensation files	Yes	Yes	No	No	No
Parameter switch ON (Allowable to rewrite the parameters)	Yes	Yes	Yes	No	No
Program switch ON (Allowable to edit the program)	Yes	Yes	Yes	Yes	No
Uploading and downloading the part programs	Yes	Yes	Yes	Yes	No
Setting the tool lifetime and downloading the tool lifetime file	Yes	Yes	Yes	Yes	No
Inputting the macro variables	Yes	Yes	Yes	Yes	No
Inputting the cutter compensation data (The tool setting allowable) and downloading the cutter compensation and tool offset files	Yes	Yes	Yes	Yes	No
Uploading the pitch error compensation files	Yes	Yes	Yes	Yes	Yes
Uploading the tool lifetime file	Yes	Yes	Yes	Yes	Yes
Uploading the cutter compensation and tool offset files	Yes	Yes	Yes	Yes	Yes

If the operation limited by the authority level should be executed, the corresponding operation

SYSTEM

authority level should be obtained. Press

key to enter the system interface, and then press

SYSTEM INFO

to enter the password display interface, and press

DEGRD LEVEL

ALTER PWD

INPUT PWD

to enter the corresponding setting, and input the password corresponding to the operation level, so the operation authority corresponding to the level is obtained. On the password setting page, the operation password of the level or that lower than the level, the current password level can also be degraded.

The authority level doesn't remain after power off at operation authority level 1 or 2, and the operation level 3 is entered after power on, again. The operation authority of $3\sim5$ levels remain after power off, and the operation authority level before power off is restored after power off, again.

When the authority isn't enough, the reminder is popped up to remind that the corresponding operation authority isn't enough. In Auto mode, the operation authority executed by the program isn't enough, the machine movement should be stopped and the alarm occurs.

(1) Entering the authority level

DEGRD LEVEL

Press software key to reduce the operation level and the current operation authority level is displayed in the operation authority column of the window.

INPUT PWD

Press software key to input the password of the corresponding level to enter the corresponding operation level.

Note: The initial password relation corresponding each authority level is shown in the following list.

Operation level	Initial password
Level 1	***
Level 2	***
Level 3	333333
Level 4	44444
Level 5	Without operation password

(2) Rewriting the password

Firstly, the operation authority level for rewriting the password should be entered; press

ALTER PWD		
heren ind	software key to rewrite the system curr	rent authority password. Input the new and old
	ALTER PWD	
	Old password:	
	New password:	
nooswordo in	Confirm new:	adit hay and the auroar can be awitched
passworus in		edit box, and the cursor can be switched
		CHANGE
between the	new and old password edit boxes	by pressing , and finally press
ОК		
	to complete rewriting the password.	

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3.3.4 System File Management

In the system page	set, pre	MEMO DEV:	DRY ICE	softwa	ire key	to ente	er the fil	e manager	nent display
page and the page is sh	own in F	ig.3-20:							
, , , , , , , , , , , , , , , , , , ,	DI RESET 1EN -> MEMORY 9881ā	DEVICE DATA FILE RAM ENC ENC ENC ENC ENC ENC ENC ENC ENC ENC			*ROG 00000 . CNC 00004 . CNC 000082 . CNC 00012 . CNC			<u>*</u>	
		CNC CNC	-						
						(₫ \$ 12:44:3	3	
	PARAM PI	TERROR SYSTEM INFO	MEMORY DEVICE	PLC	GSKLink	SWITCH LIST	OUTPUT		
			Eig 2	2 20					

Fig.3-20

The window is divided into the left and right columns. The left display column is displayed the system files and the content of the part program files; when the system is with the U disc, the right display column is displayed the file content in the U disc, which is shown in the above figure. Then, the system files can be input and output, and the files in the system can be output to the U disc, or the files in the U disc can be input into the system.

SWITCH LIST

(1) Press software key to switch the cursor between the left file content column of the system and the right content column in U disc.

(2) When t	the cure	sor is or	n the file folder, pr	ess 🗘	and		to fold a	nd unfo	old the fil	e.
(3) Press	압 ,	$\hat{\Omega}$	keys to move th	e cursor to	o the fi	le to t	be operat	ed, and	d press	INPUT
key to select the	he file	and the	e selected file is t	icked off,	like the	e part	programs	s O009	8, O000	03 and
O0777 in the store to select all file	ystem f s in the	ile conte folder.	ent. When the cur	sor is on tl	ne seleo	cted fil	le, then,	INPUT	key is p	ressed
(4) Then, a	(4) Then, after the system files are selected, software key is pressed to output all									
the selected fi	les intc	the U	disc; same, afte	r the files	in the	U dis	c are sel	lected,	OUTF	PUT

software key is pressed to input all the selected files into the system file content.

3.3.5 The Ladder Diagram

	SYSTEM		PLC	
Press		function key and then press		software key to enter the current

PLC display page and real-time check PLC execution situation; the ladder diagram page mainly includes the subpages of the version message, the monitor, PLC data and PLC status, etc, and the content displayed in each page can be checked by pressing the corresponding software keys. And the page is displayed in Fig.3-21.

•								
MDI RES	ET							
SYSTEM -> PLO	: -> VERSIO	N INFORMATI	ON					
PROGRAM NAME	STDPL	C-AXTL.LD2			PLC STAT	re	RUN	
DESIGNER	广州*	校校			PLC MODE	a	PLC-N1	
PLC VERSION	2014	07 16			120 11001	_		
CRC32	BEC5	01 10						
0.0002	0.00				CUR. SC/	N PERIOD	16	
CREATED DAT	F 2014-	12-03.14:0	2:04		MAX, SC/	N PERIOD	16	
MODIFIED DAT	E 2014-	12-03.14:0	2:06		MIN. SC/	N PERIOD	16	
COMMENTS								
GSK988TA/TB D08=0:GSK988 D08=1:GSK988 D08=2:GSK988	示准梯形图 BTA BTA-H BTB/GSK988T	B-H						
							毗 🏍 12:45	:17
PARAM	PITERROR	SYSTEM INFO	MEMORY DEVICE	PLC	GSKLink	VERSION	MONITOR	>

The system current running mode and status are displayed on the top of the page and the version message of the ladder diagram, the currently running ladder diagram program and its running status, etc are displayed.

3.3.5.1 The Ladder Diagram Monitor Display

SYSTEM

Press function key, and then press the ladder diagram software key to enter the ladder

MONITOR

diagram page set and press software key to enter the operation monitor display page of the ladder diagram program, which is shown Fig.3-22:

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

MDI	RESE	T						
PLC -> M	ONITOR	-> stdpl	C-ENU.LD2 -	> [window1	- Level1]			
PLC -> M returnet R0.0110 R0.0 R0. R0. R0. R0. R0. R0. R	ONITOR 1 1 0 0 2 2 3 7 1/0:exter 1/0:exter 1/0:exter 5 4 4 wel proce 0	R0.2 ral ESP input K10.7 K10.7 K10.7 K10.7 K10.7 K10.7 K10.7 K10.7 K10.7 K10.7 K10.7 K10.2 K1	Signal (X0.5) h	≥ [uindou] igh/low level al	ars	R 0 0 0 0 0 0 0 0	0.0 0.2 2.0 2.0 0.2	
							■ ■ 12.47	× 14
∧ wind Lev	low1 el1	window2 Level2	window3 P0	window4 P1		SELECT	SEARCH	. 14

Fig.3-22

The monitor page can be checked the connect/disconnect status of the current contacts and the coils, and the current value of the timer and the counter. When the contact and the coil are connected, the base color is green; otherwise, the base color is same as the window one. For example, \neg

means the contact X0.5 is connected, \prec \rightarrow means the coil Y25.2 is not connected.

1. Checking the window program

window1	
Level1	

In the monitor page, four window programs should be monitored meanwhile, and

window2 window3 window4 Level2 P0 and P1

diagram block corresponding each window, and then, the ladder diagram of the block corresponding to the selected window is displayed on the screen.

2. Selecting the window block

(2) Press software key to select the window program, and then the page is shown in Fig.3-23:

PLC -> MONITOR -> STDPLC-ENU.LD2 -> [window1 - Leve11]
R0.010gic 1 R0.0 R0.0 R0.0
R0.0
R0.2:1ogic 0 R0.2 R0.2 R0.2 R0.2 R0.2
returnk3 ESP alarm K10.7: 1/Otexternal ESP input signal (X0.5) high/low level alarm
SELECT ce.4 address symbol
Level1 Level2
P0 Initial_Power_On P1 Over_Travel_Signal
P2 Machine_Panel_Input_Signal_Map P3 Machine_Panel_Output_Signal_Mai
P6 Work_mode_Key
<u> </u>
Fig.3-23
(3) Press \square \square \square \square \square \square to select the ladder diagram corresponding the
window
(4) Press software key to confirm the selection and to return the previous menu and
CANCEL
press software key to cancel the selection and to return to the previous menu.
3. Searching for the parameter, the code and the internet
(1) Select the block window to search for the code, the parameter and the internet: that is to say
(1) Select the block window to search for the code, the parameter and the internet; that is to say,
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 window2 window3 window4 Level1 Level2 P0 P1
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, window3 P0 or window4 P1 software key to
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, window3 P0 or window4 P1 software key to select the window and the corresponding block ladder diagram is displayed in the window
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, P0 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window.
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, P0 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window.
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, P0 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24:
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1 window2 Level2 window3 P0 window4 P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press software key to enter the searching page, which is shown in Fig.3-24:
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, P0 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24:
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1 , window2 Level2 , window3 PO or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24:
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, window3 P0 or window4 P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24:
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 press window1 Level1 press software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press software key to enter the searching page, which is shown in Fig.3-24: MDI REST MOI RE
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Level2, window3 P0 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24:
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level11, window2 Level22, window3 P0 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software key to (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software key to (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software key to (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software window3 P1 software (2) Press software key to enter the searching page, which is shown in Fig.3-24: window3 P1 software software software
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 press window1 level1 press window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press software key to enter the searching page, which is shown in Fig.3-24: Mol REAL
 (1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1 window2 Level2 window3 P0 or Window4 P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. SEARCH software key to enter the searching page, which is shown in Fig.3-24: MDI RESET Software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page, which is shown in Fig.3-24: Search software key to enter the searching page is a searching page
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Window3 or P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24: MD RET
(1) Select the block window to search for the code, the parameter and the internet; that is to say, window1 Level1, window2 Window3 or Window4 P1 software key to select the window and the corresponding block ladder diagram is displayed in the window and the code, the parameter and the internet can be searched in the window. (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24: MDI REFINITION SUPPORTING DISPLAYED IN THE SEARCH (2) Press SEARCH software key to enter the searching page, which is shown in Fig.3-24:

II Operation

Fig.3-24

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

(3)Separately press

software key to search for

the parameter, the code and the internet in the block corresponding to the window and move the cursor to position in the corresponding location.

FIRST PAGE

LAST PAGE

___, _____ to move the cursor to position at the initial and the

last lines of the block corresponding the window.

(5) Press \land software key and the screen is displayed returning to the previous menu.

4. Return

In the figure, press Software key and the screen window is displayed returning to the previous menu.

3.3.5.2 PLC Data

In the ladder diagram page set, press the soft key , and then press PLC DATA to enter PLC data status display page and it includes setting K, D, DT and DC parameters, which is shown in Fig.3-25:

MDI	RESET									
SYSTEM -:	> PLC -> P	LC DATA ->	K							
	7	6	5	4	3	2	1	0	ľ	
K0000	0	0	0	0	0	0	0	0		
K0001	0	0	0	0	0	0	0	0		
K0002	0	0	0	0	0	0	1	0		
K0003	0	0	0	0	1	1	0	0		
K0004	0	0	0	0	0	0	0	0	-	
K0005	0	0	0	0	0	0	0	0		
K0006	0	0	0	0	0	0	0	0		
K0007	0	0	0	0	0	0	0	0		
K0008	0	0	0	0	0	0	0	0		
K0009	0	0	0	0	0	0	0	1		
K0010	1	0	0	0	1	0	0	0		
K0011	0	0	0	1	0	1	0	0		
K0012	0	0	0	0	0	1	0	0		
K0013	0	0	0	1	0	0	1	0		
K0000 BIT7	K0000 working memory BIT7									
							ĺ	🗓 🍜 12:49:	:17	
^ к	:	D	DT	DC			SAVE	ADDR SRH		

Fig.3-25

1. Setting K parameter

(2) Press

(1) On PLC data display page, press K software key to enter setting K parameter display page.

key to select the parameter status bit to

ADDR SRH

software key to input K variable to be selected, and then press

OK

software key to move the cursor to position in the parameter. The meaning of the status bit is displayed at the bottom of the screen.

INPUT

be rewritten; or press

(3) key is pressed repeatedly and the status bit can be switched between 0 and 1, and the status of the selected K parameter status bit can be rewritten.

(4) Pres	s ①	Ŷ	<□ ,	\Rightarrow	to move the cursor to complete rewriting.
	ADDR S	RH			
Press		S	oftware k	ey to i	nput K parameter address to be searched and the cursor

is positioned to K parameter address to be searched.

D

2. Setting D parameter

(1) In PLC data status display page, press parameter D display page, which is shown in Fig.3-26:

		MDI RESE	T			
		SYSTEM -> PLC	-> PLC DATA -> D			
			value	Min. value	Max. value	
		D0000	4	0	7	
		D0001	1	0	7	
		D0002	0	0	7	
		D0003	2	0	7	
		D0004	0	0	7	
		D0005	0	0	7	
		D0006	0	0	7	
		D0007	1	0	7	
		D0008	1	1	16	
		D0009	0			
		D0010	0			
		D0011	0			
		D0012	0			
		D0013	0			v
		D0000 total	tool position of tool p	ost		
					▶ 🐔 12・49・1	57
		1 1	1 1	1 1	42.012.40.	
		л к	D DT	DC	SAVE ADDR SRH	
				Fig 3-26		
				T 19.5-20		
(2)	Press		, 압, ₽	key to select	parameter D to	be rewritten; or press
	ADDR SR	н				
	noon on		uana kau ta lu			ated and these wasses
		SOIL	vare key to in	iput parameter	U TO DE SEIE	ecteu, and then press
	OK					
	UK					
		softw	are key to move	e the cursor to	position in the p	arameter. The meaning
			, 	 .		6
	of the para	meter is c	isplayed at the	pottom of the s	creen;	
	18.17	N IT				
	INF	10				

(3) Press key to make the selected parameter D modifiable.

software key to enter setting

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

<u>惫г[⊶]州数控</u>

efamatic machine tools

 (4) Input the numerical value to be rewritten and then press 3. Setting parameter DT 								
(1)On PLC data status display page, press DT software key to enter DT parameter setting display page. The method of setting parameter DT is same that of setting parameter D. 4. Setting parameter DC								
On PLC data status display page, press software key to enter DC parameter setting display page. The method of setting parameter DC is same that of setting parameter D.								
3.3.5.3 PLC Status								
On the ladder diagram page set, press software key and then press PLC STATE to enter PLC status display page, and the page is shown in Fig.3-27:								
SYSTEM -> PLC -> PLC STATE -> X.Y.F.G X Y F G 0 000000000 1 1000000000 1 1000000000 1 2 000000000 2 000000000 1 1000000000 1 000000000 2 000000000 1 000000000 2 000000000 2 000000000 2 000000000 2 000000000 3 000000000 4 000000000 3 000000000 5 000000000 5 000000000 5 000000000 5 000000000 5 00000000 5 00000000 6 00000000 5 00000000 5 00000000 5 00000000 5 00000000 6 00000000 7 00000000 8 00100000 7 00000000 8 00100000 8 00100000 8 00100000 8 00100000 8 00100000 8 00100000 8 00100000 8 00100000 10 0000000 11 00000000 11 00000000 11 000000000 11 000000000 </td								
助参 12:50:33								
X.Y.F.G R.A.K SEARCH								
Fig.3-27 On the page, press X.Y.F.G software key, the window is displayed the status message of								
each parameter X, Y, F and G. Press keys to check among parameters X, Y, F and G.								
Press R.A.K software key to check the status message of each parameter R, A and K. Then,								
press , , keys to switch among parameters R, A, K, and press , , keys to								
check among parameters P, A and K. During checking the parameters, the note of each parameter is displayed at the bottom of the								
CHANGE to puttely and to share the detailed water of each data is a sub-								
parameter.								

Press SEARCH software key to move the cursor to position the parameter to be searched. Searching is operated in the whole page, and only inputting the parameter name and parameter number can be found exactly; while only inputting the parameter number can't find the parameter.

Press software key and the screen is returned to the previous menu.

3.3.6 GSK-Link Communication Setting Page

Press the function key and then the soft key **GSKL ink** to enter the GSKLink display page to view the current communication message. GSKLink page includes the communication, servo, I/O subpage. The user can view the displayed content in subpages by corresponding soft keys. The displayed page is shown in Fig.3-28.

MDI RESET							
SYSTEM -> GSKLink -> SE	RVO -> SER ⁱ	/O ADJUST -	Axis X				BSOLUTE
x						X	351.8769
<u>^</u>	CMD	POS		0	pulse		
SERVO ID : 1	ACTUAL	POS		-1	pulse	Z	0.0000
Run Stat: 口便能	ACTUAL	SPD		0.00	rpm		
Run type: PUS	ENCDEF	R VAL	1319	13536	pulse		LATIVE
	POS EF	ROR		0	pulse	U U	351.8769
	SER CL	JRRNT		0.0	A	1	0 0000
	SER TE	MPTR		25.0	С		0.0000
	DC GEN	ERATRIX		313	٧	M/	ACHINE
PA19:POS.PROP.GAIN	40	PA25:POS.	FFFDFORF.G	AIN [ρ	- x	351.8769
PA26:POS FEEDEORE ETLT	2000	PA15:VEL	PROP GAIN		498		0.0000
PA16-VEL INT T CONST	2000	PA19-VEL	EEEDBACK E	пт Г	430	Z	0.0000
DA17. CUDDENCY ELLTED	0000	TATO TEL.	I LEDDAOK I	101.	333		
PATT: CURRENUT FILTER	2999					ד	0000
							₺ 12:51:33
PARAM PITERROR	SYSTEM INFO	MEMORY DEVICE	PLC	GSK	Link	SERV0	I/O unit >

Fig.3-28

The upper in the page displays the devices' parameters, corresponding physical addresses and logic ID required by the CNC.

3.3.6.1 Servo Message Page

SERVO to enter the servo message display page. GSKLink page includes the servo adjustment, servo parameter, servo I/O, servo debugging and oscilloscope subpage. The user can view the displayed content in subpages by corresponding soft keys. The displayed page is shown in Fig.3-29.

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

MDI RESET									
SYSTEM -> GSKLink -> SE X SERVO ID : 1 Run Stat: 已使能 Run type: POS	RVO -> SER CMD ACTUAL ACTUAL ENCDEF POS EF SER CL SER TE	POS POS POS SPD VAL ROR IRRNT MPTR	Axis X - 13191	0 0.10 3536 0 0.0 25.0	pulse pulse rpr pulse pulse f	> > > >	ABSI X Z REL U W	DLUTE 351.87 0.00 ATIVE 351.87 0.00	'69 100 '69
PA19:POS.PROP.GAIN PA26:POS.FEEDFORE.FILT. PA16:VEL.INT.T.CONST PA17:CURRENCY FILTER	DC GEP 40 2000 399 2999	PA25:POS. PA15:VEL. PA18:VEL.	FEEDFORE.G/ PROP.GAIN FEEDBACK F1	308	49:	/ 5 5	MACI X Z	11NE 351.87 0.00	'69 100
							-	ຍຍຍຍ ∎ \$ 12:52	2:36
∧ SERVO ADJUST SERVO PARAM	SERVO CONFIG	SERVO IO	SERVO TUNE	OSC GR	ILLO APH				

Fig.3-29

Servo adjustment

In the servo display page, press the soft key The display page is shown in Fig.3-30: ADJUST to enter the servo adjustment displaypage.

MDI RESET							
SYSTEM -> GSKLink -> SE	rvo -> ser'	VO ADJUST -	Axis X			ABSC	IUTE
x						X	351.8769
^	CMD	POS		0 p	ulse		
SERVO ID : 1	ACTUAL	POS		-1 p	ulse	Z	0.0000
Run Stat: 已便能	ACTUAL	SPD	-0.	10	rpm		
Run type: POS	ENCDEF	R VAL	1319135	36 р	ulse		ATTVE
	POS EF	ROR		1 р	ulse	U	351.8769
	SER CU	JRRNT	0	.0	A	ы	0.000
	SER TE	MPTR	25	.0	С		
	DC GEN	ERATRIX	3	08	۷	MACH	IINE
PA19:POS.PROP.GAIN	40	PA25:P0S.	FEEDFORE.GAIN	N	0	x	351.8769
PA26:POS.FEEDFORE.FILT.	2000	PA15:VEL.	PROP.GAIN		498	z	0.0000
PA16:VEL.INT.T.CONST	399	PA18:VEL.	FEEDBACK FILT	г. 🗌	999		
PA17:CURRENCY FILTER	2999					т	0000
							₺ 12:53:51
∧ Axis X Axis Z	ACT. POS ÷GEAR.R						

GSK988TA's servo adjustment module provides the following functions:

Monitor the system's controlled axis in real-time by the servo communication feedbacking data, which makes the operator understand the current working states of the servo, motor and so on, including:

- (1) When the servo is in the position control mode, the system displays the servo receiving code pulse quantity, the servo's feedback pulse quantity from the motor's encoder, the motor's actual speed, the servo's internal current and the temperature checked by the servo;
- (2) When the servo is in the speed control mode, the system displays the servo receiving the code speed, the servo's actual speed gained by the motor, the servo receiving code pulse quantity, the servo's internal current, and the servo checking temperature(the servo spindle increasing the spindle's encoder value display).

Data display area description of the servo diagnosis page:

X: the current selected axis' axis name.

SERVO ID: the slave machine's salve machine number connected the axis.

RUN STAT: the current servo drive's run state.

RUN TYPE: the servo control mode corresponded to the diagnosis data may be displayed to "Position" and "Speed".

CMD POS: the position pulse quantity received by the diagnosis servo from the system.

ACTUAL POS: the position pulse quantity feedback by the diagnosis servo.

The displayed in the bottom of the above is all kinds of gain adjustment of the servo run, and the page can be adjusted when the system switch is ON. The servo gain's adjustment options are: position proportional gain, position loop feedforward gain, position feedforward filter coefficient gain, speed loop proportional gain, speed loop gain, speed feedback filter coefficient and the analog filter coefficient. The corresponding adjustments are referred to their options.

Axis switch: press	Axis X	Axis Z	,	Axis S	to	switch	the	displayed	servo	diagnosis	and
adjustment of X, Z, S.											

SERV0

PARAM

Servo parameter

In the servo display page, press the soft key page. The display page is shown in Fig.3-31:

MDI	RESET								
SYSTEM ->	GSKLink →	SERVO -> SERV	/0 PA	RAMETE	R -Axis X				
No.	data				СС	mments			ľ
000	315	0~9999		密码(315:用户参	跂 385:调1	电机默认参数	ጵ)	
001	150	1~1000		电机型	则号代码				
002*	0	0~1		电机类	é型(0:同步	机 1:异步构	丸)		
003	0	0~35		上电衫	财始化显示内	容			
004	21	9~25		控制模	其式				
005	0	0~2							
006	2	0~2							
007	2	0~2							
008	0	0~1000							
009	0	<mark>0~10</mark>							
010	0	0~30000							
011	2	0~11							
012	0	<mark>0~1</mark>							٦,
p								▶ 🛸 12-57	- 15
		1	1		1	1	1	12.07	1
Axis	X Axis Z	NO.SRH	S	AVE	RELOAD	BACKUP	RECOVER		>

Fig.3-31

The servo parameter page includes viewing the servo parameters, modifying from the CNC side and saving the servo parameters.

/	Axis switch: press Axis X, Axis Z, Axis S to sw	tch the displa	ayed servo parameters of X,
Z, S	b .		
ſ	Modifying parameters: press to input a parameter and then press to comple	r value or dire e the modific	ectly input a parameter value,
ç	Saving a parameter: after a servo parameter is modifie	SAVE	is pressed, and the

to enter the servo parameter display

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

modified parameter value remains unchanged after the servo is turned on again.

Reading a parameter: press RELOAD to recover the parameter from the servo EEPROM motor parameter area.

BACKUP Backuping a parameter: after a parameter is modified without a mistake, is pressed to save the parameter to EEPROM backup area.

RECOVER

Recovering a parameter: press to recover the parameter backup in EEPROM backup area.

NO.SRH to input a parameter number, and then press the Searching a parameter: press confirmation key.

Note: when the system is in MDI mode, the parameter switch ON and the operation authorization is more than [3], the parameter modification can be executed, but some parameters cannot be modified in the CNC or be done at the more than [3] operation authorization.

Servo allocation

CONFIG to enter the servo allocation display page. The In the servo display page, press display page is shown in Fig.3-32:

I	MDI	RESET					
ME	SSAGE	-> GSKLi	nk -> SERVO	-> SERVO CONFIGURAT	ION -Axis X		
	SERVO)					_
	drive	егТуре	GSLink				
	Versi	ion	1.29				
	HW.Ve	ersion	1.14				
	Par.V	/ersion	0.04				
	Seria	al NUM.					
	МОТОР	2					
	motor	гТуре	150: 130SJ	T-M100D(A4I)			
	Seria	al NUM.					
						動き	\$ 13:01:08
^	Axi	s X 🛛 A	xis Z	LOAD DEF.PAR.			

Fig.3-32

The servo allocation page can view the servo driver, the servo motor's basic message window and recover the motor's default parameters.

- 1. Basic messages of the servo and motor include the following contents Servo: servo type, software version, hardware version and servo serial number. Motor: motor type and motor serial number.
- 2. Recover the motor's default parameters

After confirming the servo and motor's basic messages correct, press debug the motor's default parameters.

Note: the operator cannot recover the motor's default parameters at will. If necessary, contact with our technicians.

SERVO IO

Servo I/O

In the servo display page, press page is shown in Fig.3-33:

to enter the servo I/O display page. The display

MDI	RESET		
system ->	GSKLir	nk -> SERVO -> SERVI	0 I/O - Axis X CNC-SER I/O
I/O type		data	comments
	BitØ	0	Clear alarm
	Bit1	0	Zero speed clamp
	Bit2	0	Direction run
	Bit3	0	rigid tap run
INPUT	Bit4	0	CCW
	Bit5	0	CW
	Bit6	0	Auto lock
	Bit7	0	Shift stage
	BitØ	0	Alarm output
	Bit1	1	0 speed output
	Bit2	0	Direction end
OUTPUT	Bit3	1	Torque arrive
	Bit4	0	Speed arrive
	Bit5	1	Pos arrive
	Bit6	0	rigid tapping
			▦≶13:02:31
^ Axis	X /	Axis Z CNC-SER I/O	SER-MOT 1/0

Fig.3-33

The servo I/O page is to view the servo driver's internal I/O signal state, among which I/O is divided into hardware I/O and bus I/O:

1. Hardware I/O:

Hardware I/O inputs/outputs I/O signals by the servo driver CN1 interface.

2. Bus I/O

Bus I/O is defined that the servo receives or sends the CNC's I/O signals by the bus interfaces.

Servo debugging

SERVO TUNE In the servo display page, press to enter the servo debugging page. Observing the motor speed waveform or circular degree test chart by the servo debugging function in the page can ensure the servo parameter is the most reasonable and optimization.

Oscilloscope

OSCILLO GRAPH

to enter the oscilloscope page. Before using the In the servo display page, press oscilloscope, set the monitoring servo data, oscilloscope monitor type, waveform zooming unit and the trigger sampling's sampling unit. The oscilloscope setting page is shown in Fig.3-34:

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

MDI RESET			
SYSTEM -> GSKLink -> OSCILLOGRAF	H → SETTING(CH1)	ABSOLU	JTE
		x	351.8769
MONITOR AXIS	X	z	0.0000
MONITOR DATA	ACTUAL POS		
MONITOR MODE	TRIGER	RELAT	IVE
UNIT(pulse/grid)	6000000.00000	U	351.8769
SAMPLE PERIOD(ms)	2	W	0.0000
SAMPLE TIME(ms)	3748		
		MACHIN	1E
	x	x	351.8769
	000.0	7	0 0000
	RISE EDGE		0.0000
v		TE	1000
		 <u>1</u>	5 13:05:21
CH1 CH2			

Fig.3-34

The set contents are described in the followings:

- (1) "CH1", "CH2": select the required set channel.
- (2) Monitor mode: set the oscilloscope to a trigger or memory type. The trigger type is to set a sampling described in the above to realize the arrival-time stop's sampling mode, and the memory type is to stop sampling's sampling mode after the servo alarm occurs.

Differences of the two monitor modes are described in the following:

Property type	Sampling start	Sampling end mode	Save the wave data
	mode		or not
Trigger type	Press start/stop	Automatic stop when	No
	soft key	the sampling time is	
		arrival	
Memory type	Press start/stop	Automatic stop when	Automatic save
	soft key	the servo alarms	

- (3) Sampling period: GSKLink communication function's sampling period is fixed at 60ms which can not be modified.
- (4) Set other relevant data. The set items and contents are shown below:

Item	Explanation	Setting step
MONITOR AXIS	select the current wave monitor data's	
		the option box and
		then press "UP" or
		"DOWN" key on the
		MDI panel to select
		the option, at last
		press INPUT to
		complete the option
		setting
MONITOR DATA	Select the current waveform monitoring	Ditto
	servo data according to the required	

	including:	
	Code position	
	Feedback position	
	Code speed	
	Feedback speed	
	Servo temperature	
	Servo current	
UNIT(pulse/grid)	Set the waveform's unit in the vertical	Directly input the
	axis display. Taking an example of	digit and then press
	code position:	INDUT
	Setting to 5000 means the height in the	to complete
	oscilloscope's background gridding	the modification
	means 5000 pulses	
SAMPLE	Set the sampling time limit of the trigger	Cannot modify it
PERIOD(ms)	oscilloscope.	

After setting the oscilloscope data in the setting page, press oscilloscope monitor page as Fig.3-35:

Press the soft key "Start" to start sampling the servo data in the oscilloscope page. When the sampling data is 0, the waveform depicts from the left edge's center point to the right edge point-by-point, which path means the monitor data's 0 value separate position. The monitor data's + value is on the upward side of 0 value separate position, - value is in the below of 0 value separate position. The condition is the same with the real oscilloscope display.

Press "Stop" to end the sampling when sampling. For the memory oscilloscope, manually pressing automatically save the last 1500 points' sampling data.

Chart explanation:

: CH1 (channel 1) wave : CH2 (channel 2) wave : CH1 data unit to enter the

	E	etamat	IC Office Office Tel:	+27 11 626 272	In South Afri 20, design@e	ca famatic.com	1	
A r∺ aus			088741/05608	8TR Turning Cent	or CNC System	Liser Manual	Programming	& Operation]
<u></u>	<u> </u>	33K900 1A/03K	966 IA 1/GSK96	orb running Cente	er CNC System		Frogramming	
	. CH2 d ☐: time a	ata unit xis unit						
3.3.6.2	I/O Unit Pag	je						
Pres	SYSTEM, a	and then G	SKLink	to enter GS	KLink page	set. Pres		and then
press allocatio	<mark>I/O unit</mark> on, I/O para	to enter I/ meter subp	′O unit dis bage. The	play page. I user can vie	/O unit dis w the disp	play page played con	mainly induitent in sub	cludes I/O opages by
corresp	onding soft k	eys. The dis	splayed pag	je is shown ir	n Fig.3-36.			
		MDI RESET	-> 1/0 UNIT -> 1/	0 CONFIG -> I/O unit	1			
		DEVICE HARDWARE ID version	0×000000000000000000000000000000000000	000000000000000000000000000000000000000				
		DI NUM.	72 0	DO NUM. AO NUM.	48 4			
		RESOLUTION DAC RES. ADC RES.	16 12					
		A 1/0				■ \$ 13:09:52		
		CONFIG 170	T ANAI'I					

Fig.3-36

As the above figure, the user can view I/O hardware device message, port message and precision message in I/O allocation page.

Hardware device message includes: hardware ID and version number;

Port message includes: DI quantity, DO quantity, AI quantity and AO quantity;

Precision message includes: DAC precision and ADC precision.

In I/O display page, press **I/O PARAM** to enter I/O unit parameter setting page as Fig.3-37:

Chapter 3 Display Page

MDI	RESET							
system ->	GSKLink → I/0	0 UNIT -> 1	I/O PARAM -	→ I/O unit	1			
Setting	s of input con	tacts		Setting	of output	contacts		
CONTACT	PLC ADDR	ESS (CONTACT	PLC ADD	RESS	DEF.PAR	DISLINK	Ê
DI01	X0100.	0	D001			l I)	
D102	X0100.	1	D002			l I	0	
D103	X0100.	2	D003			(0	
D104	X0100.	3	D004			(0	H
D105	X0100.	4	D005			l I	0	
D106	X0100.	5	D006			l I	0	
D107	X0100.	6	D007			l I	0	
D108	X0100.	7	D008)	
D109			D009			(0	
DI10			D010			(0	
DI11			D011			l I	0	
DI12			D012			l I	0	
DI13			D013			l I	0	
DI14			D014			I)	
DI15			D015			1	0	
DI16			D016				0	
DI17			D017				0	
							🗓 🍜 13:10:	55
<mark>∧</mark> I/0 un	it1 <mark>I/O unit2</mark>	I/O unit3			MODIFY	CLEAR	SEARCH	

Fig.3-37

In the page, the user can view or set I/O unit's each input/output mapping address signals, special I/O, valid Level, special output, default state during emergency stop and default state's message during the loop OFF.

I	n I/O pa	ramet	ter page,	press	Ē,	F	and the	e cur	sor movemer	it key		Ţ,
\Diamond	, ⇔	to se	elect the	require	d set I/O	par	ameter;	pres	sing SEARCH	appe	ears th	e 4 soft
keys view	SEARCH	DI _, spond	SEARCH	DO _, S leter.	EARCH /	AI, s	SEARCH	AO,	and press the	e corres	spondir	ng key to

Note: the concretely modifying I/O steps are referred to GSK988TA Installation and Connection.

3.4 Setting Page Set

SETTING

Press function key to enter the setting page set, and the setting page set includes the subpages of setting the tool offset, setting CNC and the macro variables, and the contend displayed in each page by pressing the corresponding software key. The software key layer structure is shown in Fig.3-38:

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3.4.1 Tool Offset Setting

3.4.1.1 Tool Offset Setting

Press SETTING software key to enter the tool offset setting page, which is shown in Fig. 3-39:

M	DI	RESET							
SETT	ING ->	TOOL OFFSET					ABS	DLUTE	
No.	type	Х	Z	R	T	A	x	351.87	69
001	ofset	40.0000	0.000	0.000	0		1		
001	wear	0.0000	0.000	0.000	0		7	0 00	00
002	ofset	0.0000	0.000	0.000	0		1	0.00	00
002	wear	0.0000	0.000	0.000	0		REL		_
002	ofset	0.0000	0.000	0.000	0				
005	wear	0.0000	0.000	0.000	0		U	351.87	69
004	ofset	0.0000	0.000	0.000	0				
004	wear	0.0000	0.000	0.000	0		W	0.00	00
0.05	ofset	0.0000	0.000	0.000	0				
005	⊌ear	0.0000	0.0000	0.000	0		PIAC	TINE	
000	ofset	0.0000	0.0000	0.000	0		X	351.87	69
006	⊌ear	0.0000	0.0000	0.000	0				
007	ofset	0.0000	0.000	0.000	0		Z	0.00	00
007	⊌ear	0.0000	0.0000	0.000	0				
000	ofset	0.0000	0.0000	0.000	0		÷.	0000	
008	⊌ear	0.0000	0.0000	0.000	0			0000	
								₪ ॐ 13:13	:43
	TOOL SETTIM	CNC SETTING	MACRO SPECIAL MACRO	MEASURE +	INPUT	C I	INPUT	SEARCH	>

On the page, the tool offset value and the wearing value of each axis corresponding to each tool offset number should be checked and set; About the detailed setting method, refer to Chapter 7.

On the right column of the page of setting the tool offset, the message like the current absolute coordinate, the relative coordinate value and the tool number operated by the current program are displayed meanwhile.

- Note 1: The axis number displayed in the page is set by the parameters #1010 and #8130.
- Note 2: The linear axis or the rotary axis is specified by the axis property of each axis set by the parameter #1022 (It can't be 0).
- Note 3: Each axis name is set by parameter 1020.
- Note 4: Whether the tool offset value is specified by the diameter value or the radius value is set by the 1st bit of parameter #5004; Each axis movement amount is specified by the diameter or the radius is set by the 3rd bit of parameter #1006.
- Note 5: Only when the operation authority is equal to or high than level [4], the tool offset and the wearing value can be set.
- Note 6: The system maximum supports the tool offset of four axes; if more than four axes are displayed, only the previous four axes are displayed.

3.4.1.2 Tool Life

Press **LIFE** to enter the tool life set page in the tool offset page as Fig.3-40:

Ν	1DI	RESE	T							
SE	ITING - LIFE I	> TO NFO:	GROUP 01	G ->TOOL L	_IFE TOOL NO).0000	LIFE	USED	0	
	SYMBLE	:	* USED		# JUMP		e in	LIFE		-
	GF	OUP (01	SPECIFY	BY:TIME	LIFE TOTA	AL: 0	LIFE LEF	T: 0	٦٢
-		_								-
	GF	OUP ()2	SPECIFY	BY:TIME	LIFE TOTA	AL: 0	LIFE LEF	T: 0	
_	GF	OUP (93	SPECIFY	BY:TIME	LIFE TOTA	AL: 0	LIFE LEF	T: 0	_
-		_								-
	GF	OUP ()4	SPECIFY	BY:TIME	LIFE TOTA	AL: 0	LIFE LEF	T: 0	
L	05			OPEOLEV					T A	
	Git	UUP (95	SPECIFY	RI:IIWE	LIFE IUI	AL: 0	LIFE LEF	1: 0	-
\vdash										-
-					1			1	毗 23:19	:56
^	GRP	SET	del grp		TOOL SET	DEL TOOL			SEARCH	

Fig.3-40

Tool tooltip: the fist line displays the tool message where the cursor is. The second line displays the tool message symbolic definition, which makes the user visually understand different symbolic tooltip's definition.

Tool group message field: the first line displays the current too message, including the current tool group, tool group's count type, tool group's preset life value, the selected tool's life used in the tool group.

Tool message field: display the tool message in the tool group.

1. Modifying the tool group data

In MDI mode, press GRP SET to pop-up a dialog box to set a tool group, press

select the tool group setting's count mode (time or times), press

to switch to the next line to set

to

INPUT

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

the tool group life value as Fig.3-41:

MDI RESET						
SETTING -> TOOL SETTIN	G −>TOOL L	_IFE				
LIFE INFO: GROUP 01		TOOL N	0.0000	LIFE	USED Ø	
SYMBLE : * USED		# JUMP		@ IN I	IFE	
CROUP A1	SPECIEV	RV-TIME	LIFE TOTAL .	A	LIFE LEFT.	0
	JILOIIII	DIVITIE	LIL TOTAL.			
GROUP 02	SPECIFY	BY:TIME	LIFE TOTAL:	0	LIFE LEFT:	0
GROUP 03	SPECIFY	BY:TIME	LIFE TOTAL:	0	LIFE LEFT:	0
GROUP 04	SPECIEY	BY:TIME	LIFE TOTAL :	A	LIFE LEFT:	Ø
	OI LOII I	DITINE	Enc rome.	•		· ·
GRP SET		- 1.0F				-
SPECIEV BY. TIME		IME	LIFE IUTAL:	U	LIFE LEFI:	U
					6	1 23:22:06
UK CANCEL						
		E i e	0.44			
		FIG	.3-41			

2. Tool state setting

In MDI mode, move the cursor to the tool number in the current tool group, press **TOOL SET** to set the current tool to the skip state or cancel the skip state.

3. Modifying the tool number

In MDI mode, move the cursor to the tool number grid, directly input the tool number modification, and then clear the current tool's tool life.

4. Deleting a tool

In MDI mode, move the cursor to the tool number grid,, press **DEL TOOL** to clear the current tool number, and then clear the tool number' tool life.

5. Deleting a tool group

In MDI mode, press **DEL GRP** to delete the whole tool group's tools, i.e., clear the whole tool group's tool numbers, and then clear the tool group's preset life.

6. Searching a tool

Press **SEARCH** to input a tool number and then search the tool number.

- Note 1: The tool group's quantity is together determined by No. 6813 and No. 6800#0, #1. When No.6813 setting is less than 8, the total is defaulted to 128 groups.
- Note 2: The set tool group life and tool group's count type cannot be reset, their life can be reset after the tools are deleted.
- Note 3: No. 8132#0 must be set to 1 in the tool life page: it is displayed when the tool life management function is used.

3.4.2 CNC Setting Page

CNC SETTING

On setting page set, press software key to enter CNC system setting page and it mainly includes the system setting, the coordinate setting, the system time and the system IP.

3.4.2.1 System Setting Page

SYSTEM

On CNC setting page set, press ______ to enter the system setting page and it includes setting the program switch, the parameter switch, the automatic sequence number and the inputting unit, etc, which is shown in Fig.3-42:

MDI RESET								
SETTING -> CNC -> SYSTEM SETT	TING					ABSO	OLUTE	
						x	351.87	69
PROG SWITCH	r⊂ ON		⊂ 0FF			z	0.00	00
PARA SWITCH	🖸 ON		⊆ 0FF					
AUTO SEGNCE	© ON		© 0FF			U	351.87	6 9
INPUT UNIT		c	C INCH			W	0.00	90
TIDOLT DIDTO	0					MACI	HINE	
TARGET PARTS	U					x	351.87	69
Total parts	26					z	0.00	00
MACROPRG PWD	******	*						
						т	0000	
							🗓 🍜 13:16	:43
TOOL CNC SETTING SETTING MAN	CRO SP M	ECIAL IACRO	SYSTEM	COORD	T	IME	SYSTEM ADJUST.	>

Fig.3-42

The page is mainly for setting ON/OFF of the program and the parameter switches, etc. On the page, the program switch, the parameter switch, the automatic sequence number and the

	11	1 1		
input unit can be switched by	and	key. In MDI st	tatus, when the c	peration authority
level is equal to or higher than le	evel [3], ON/	OFF of the switch, inc	ch/metric system c	an be selected by

•

kevs.

INPUT

or

pressing , L

On the right column of the page, the current absolute position coordinate, the relative coordinate position value and the tool number used in the current program are displayed meanwhile.

- Note 1: Only when the program switch or the parameter switch is ON, the program or the parameter can be edited, rewritten or set.
- Note 2: Only when the operation authority is equal to or higher than level [3], CNC system can be set.
- Note 3: Only when the program protection switch on the machine panel is ON, the program and the parameter switches ON/OFF can be set.
- Note 4: Only when the operation authority is equal to or higher than level [2], the password of macro programs can be modified.

ᇲ┌╴州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3.4.2.2 Coordinate Setting

```
SETTING
```

function key to enter the setting page set; On CNC setting page, press Press

COORD

software key to enter the coordinate setting page, which is shown in Fig.3-43:

MDI RESET			
ETTING -> CNC -> COOR	DINATE SYSTEM SETTING		ABSOLUTE
	X	Z 🕇	X 351.8769
EXT OFS	0.0000	0.0000	
G54 ×	0.0000	0.0000	Z 0.0000
G55	0.0000	0.0000	
G56	0.000	0.0000	11 251 9760
G57	0.0000	0.0000	0 331.0703
G58	0.0000	0.0000	W 0.0000
G59	0.0000	0.0000	
P01	0.0000	0.0000	MACHINE
P02	0.0000	0.0000	X 351.8769
P03	0.0000	0.0000	7 0 0000
P04	0.0000	0.0000	2 0.0000
P05	0.0000	0.0000	
P06	0.0000	0.0000 🖃	
			🗒 🍜 13:17:16
MEASURE + INPUT			

On the coordinate setting page, the origin offset amount of each axis and the offset value of each coordinate axis in each coordinate system are displayed, the origin offset amount corresponding to each axis and the offset value of each coordinate axis of each coordinate system can be set.

On the coordinate setting page, the coordinate system to be set is selected by the up/down keys

11 , and the coordinate axis to set the offset is selected by left/right keys there are three methods of rewriting the tool offset: Direct inputting, measuring inputting and + inputting:

Direct inputting: Select the coordinate axis to be rewritten, press key, and then input the offset value, and then confirm.

Measuring inputting: Select the coordinate system to be rewritten, press input the measured value (if it is X axis, input X--; Z axis, input Z---), and then confirm.

+input: Rewrite the input offset value, and it is the incremental input. For example, in G54 coordinate system, X axis needs to be added up the offset value of -0.2mm, firstly, move the cursor to

+ INPUT X axis position in G54 coordinate system, and then press and input -0.2, and -0.2mm is added into the current offset value after confirming.

On the right column of the page, the current absolute position coordinate value and the relative one, and the tool number used by the current program, etc are displayed meanwhile.

Note 1: The coordinate offset can be set or rewritten only when the parameter switch is ON and in MDI modal and the operation authority is equal to or higher than level [4].

INPUT

Note 2: The axis number displayed on the page is set by the parameters #1010 and #8130. Note 3: The name of each axis is set by the parameter #1020.

Note 4: The origin offset amount of each coordinate in each coordinate system can be set by a parameter, and their corresponding relationship is shown below:

No. 1220: offset amount of each axis' external workpiece origin

No. 1221: offset amount of each axis' origin workpiece coordinate system 1 (G54)

No. 1222: offset amount of each axis' origin workpiece coordinate system 2 (G55)

No. 1223: offset amount of each axis' origin workpiece coordinate system 3 (G56)

No. 1224: offset amount of each axis' origin workpiece coordinate system 4 (G57)

No. 1225: offset amount of each axis' origin workpiece coordinate system 5 (G58)

No. 1226: offset amount of each axis' origin workpiece coordinate system 6 (G59)

3.4.2.3 Setting the System Time

Press	SETTING	functio	n ke	ey to	en	ter	the	settir	ng p	bage;	on	CNC	setting	page,	press
TIME	softwa	are kev	∕ to e	nter tl	ne sv	vsten	n tim	e set	tina ı	oage. v	which	ı is sh	own in F	ia.3-44:	
		MDI SETTING -	RESET	TIME SE	TING	,								.9.2	
			I Dec	•					1 2014	•		1			
			SUN	MON	TUE	WED	THU	FRI	SAT						
				1	2	3	4	5	6	11 1	2 1				
			7	8	9	10	11	12	13	10	$\begin{pmatrix} 2\\ 3 \end{pmatrix}$				
			14	15	16	17	18	19	20	8	6 5				
			21 20	22	23 20	24	25	26	21						
			20	25	50	51				13:17	7:43				
						2014-12	2-14,13:	:17:43				_			
		Ľ										_			
											雨 🖌	13.17.44			
			RM S			1	1						Ī		
						F	ia 3.	.44					1		
On the time s	settina i	nage	it car	hes	swite	hed	amo	na th	ne da	ate m	onth	vear	and time	e colun	nns by
	ootting	pago,					unio	ng a		ato, m	orrar,	your		5 oolali	into by
CHAN	NGE														
pressing	key	/.													
Sotting th	he mon	th: Dro		CHANGE	to	owit	ch th		reor	into t	ho m	onth	column	and th	on the
Setting ti		ui. Fie			10	50010	CII II		1501				column,		
month colum	n is ch	anged	into	the g	greer	on ר	e, pi	ress	the	cursor	mov	emen	t keys	① ,	₽,
							CHAN	NGE							
, ,	to cha	inge th	e mo	nth ai	nd pi	ress		t	o mo	ove the	e curs	sor inte	o the oth	er colu	mns to
complete setti	ing the r	month.													

machine tools
GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual 【Programming & Operation】
Setting the year: Press to switch the cursor into the year column, and then the year
column is changed into the green one, press the cursor movement keys
CHANGE
setting the year.
Setting the date: Press to switch the cursor into the date column, and then the date
column is changed into the green one, press the cursor movement keys 1, 4,
to change the date, finally press
CHANGE
Setting the time: Press to switch the cursor into the time column, and then the time column is
changed into the green one, input the time to be set in the edit keypad, and then press the cursor
movement keys , CONFIRM to set the hour, minute and seconds, finally press

software key to complete setting the date.

3.4.2.4 System IP Setting

Press function key to enter the setting page set; on CNC setting page, press

ETHENET

software key to enter the system IP setting page, which is shown in Fig.3-45:

MDI RESET			
SETTING -> CNC -> ETHER	NET SETTING		ABSOLUTE
IP ADDR	192 168 7 121		X 351.8769
SUBNET MASK	255 255 0 0		Z 0.0000
DEF. GATEWAY	192 168 11 254		RELATIVE
MAC ADDR	008047500046		U 351.8769
No.	IP allowance	Operation	W 0.0000
1	0 0 0 0	R.	MACHINE
2		R.	X 351.8769
3	0.0.0.0	R.	7 0 000
4	0.0.0	R.	
5	0.0.0.0	R.	T 0000
			毗参 13:18:16
ETHENET			>

Fig.3-45

Chapter 3 Display Page

3.4.2.5 System Debugging Function

SETTING

SYSTEM

Press **ADJUST.** in the setting page set; press **ADJUST.** in the setting page set to enter the system debugging page.

MDI RESET	
SETTING -> CNC -> SYSTEM ADJUSTING	
adjust item	discription
1.Machine Safety	This subitem includes:
2.Control axes setting	1.ESP
3.System precision for control	2.Stroke check
4.Multiple spindle control	
5.CS contour control function	
6.GSKLink fieldbus	
7.Gear ratio	
8.Set machine tool configuration	
	壘 23:36:24
	ENTER
	ADJUST.

Fig.3-46

Machine safety protection and external switch

Move the cursor to the machine safety protection and the external switch debugging, and then **ENTER**

press **ADJUST.** to enter the debugging page as Fig.3-47:

MDI RESET	
SETTING -> CNC -> SYSTEM ADJUSTING	
1.Machine Safety	discription
1.ESP alarm signal (X0.5)(3003#7):	NOTE: The esp switch between
○ Alarm when the signal is 1	system parameter and plc
● Alarm when the signal is 0	parameter must be the same
2.The overtravel limit signal is(3004#5):	
O Checked Not checked	
	₪ 23:37:21
	UPLEYEL

Setting method:
Function optional type: move the cursor to the required option, and then press in the edit
keyboard.
Numerical value type: move the cursor the required option, press to input a numerical
value, and then press
Press {return} or [cancel] on the edit keyboard to return the previous page.

Electronic gear ratio setting

ENTER

Move the cursor to the electronic gear ratio setting, and press **ADJUST.** to enter the electronic gear ratio setting page as Fig.3-48:

MDI RESET					
SETTING -> CNC -> SYSTEM ADJUSTIN	NG				
Set gear ratio):	discription			
1.Please input following data: Pulses per round(encoder) 131072 Screw lead 10 Gear teeth(screw) 1 Gear teeth(motor) 1 Command ratio(CMR) 1 Detection ratio(DMR) 1 2.Servo Gear ratio: CALC. result CALC. 1		NOTE: (1)Pulses per round of encoder for ABS.encoder = resolution Pulses per round of encoder for INC.encoder = 4 × resolution (2)Least increment for rotary axes is determined by PAR.1004#2 and 1004#7#6 Least increment for linear axes is determined by PAR.1004#2			
Axis X Axis Z		and 1006#3 (3)The system gear ratio(cmr· dmr) is used to calculated CALC SAVE			

View and set the axis' gear ratio in the page, and the set gear ratio is automatically saved to the corresponding driver.

- (1) Select the required set axis as X axis in the above figure;
- (2) Ensure the one-rotation pulse quantity of the encoder in data bar is correct (after the bus connection is normally, one-rotation pulse quantity of the encoder can be read from the driver);
- (3) Input the roll screw's lead in the lead bar. Example: when the lead is 10mm, 10 is input as the above figure;
- (4) When the lead screw: the motor is not 1:1, a gear quantity between the lead screw and motor. When the ratio is 1:1, it is not input because the system defaults the ratio value;
- (5) The defaulted gear ratio is 1:1, and the ratio between the system checking multification ratio and code multification ratio should be set if necessary;
- (6) After the above data is set. **CALC** is pressed, and the system automatically counts the rear ratio and is displayed in the result. Then press **SAVE** and the system automatically save the result to the corresponding servo driver. **SAVE** is not pressed when only the

software key to enter the macro variable setting

Chapter 3 Display Page

result not to be saved is needed.

3.4.3 Macro Variable Page

On the setting page set, press page, which is shown in Fig.3-49.

in F	ig.3-4	9.									
MD	RESET										
SETTIN	G -> CUST	OM MACRO							ABS	DLUTE	-
No.	data	No.	data	No.	da	ita No	o.	data 🕯	1 v	351 87	69
100		101		102		10	03		^	001.07	00
104		105		106		10	07		11_		
108		109		110		1	11		Z	0.00	00
112		113		114		1	15				
116		117		118		1	19		REL	ATIVE	-
120		121		122		1:	23		ll n –	351 87	69
124		125		126		1:	27		°		
128		129		130		1:	31		11		
132		133		134		1:	35		W	0.00	00
136		137		138		1:	39				_
140		141		142		14	43		-MACI	HINE	
144		145		146		14	47		x	351.87	69
148		149		150		1!	51				
152		153		154		1!	55		_	0.00	
156		157		158		1!	59		2	0.00	00
160		161		162		10	63				-
100									Т	0000	
										ta 🖏 🖏 🖏 🖏	:0
SE	TTING	CNC SETTING	MACRO	SPEC	IAL RO			S	EARCH	MACRO LIST	

MACRO

On the macro variable page, the value corresponding to each macro variable can be checked and set.

On macro variab	le page, press	LOCAL MACRO	PUBLIC MACRO	SYSTEM MACRO	to select the
type of the variable,	and press the	page keys] , 🗐 , the	direction keys	압,₽
↓ ↓ to select	ct the macro vari	able to be rewrit	ten, and the ba	ase color of the s	selected macro
variable is changed ir	nto green; or pre	SEARCH	software ke	ey to input the r	macro variable
sequence number to	be selected, pre	OK	and then th	e cursor is posi	tioned into the
macro variable data. In MDI mode, wh	en the operation	n authority level	is equal to or	high than level	[4], the macro
variable data can be re		number keys and	the backspace	e key; or the mac	ro data can be
rewritten by pressing	key, and	d the macro data	i can be rewritt	en by the numbe	er keys and the
backspace key, and th	e rewriting is dor	ne after pressing	INPUT key.		

269

<u>魚</u>Ր゚州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3.5 Message Display Page Set

MESSAGE

Press function key to enter the message page set, and the message interface is with three pages: the alarm message, the previous record, and the diagnosis, and the content displayed in each page can be checked by pressing the corresponding software keys. Its software layer structure is shown in Fig.3-50:

3.5.1 Alarm Message

On the message page set, press software key to enter the alarm message display page to display the number of CNC alarms and PLC alarms and the detailed message, and the page is shown in Fig.3-51:

MDI	RESET	ALAM(1/1):ALARM 400
ESSAGE	-> ALARM	MESSAGE
	alm No.	content
3 ALAM	400	Parameter swtich is ON
		Press &RESET# to cancel alarm.
		風 ≶ 13:20:
ALA	RM /	ALARM CNC 1/0

On the alarm message display interface, the alarm and the reminder of CNC and PLC message

are listed in one window list and it is divided by the alarm number. Press up/down keys

to scroll the list page-by-page.

ALARM

Chapter 3 Display Page

to scroll the list line-by-line, and the page keys

When PLC alarm or reminder occurs, the address A message below the message line is displayed; when CNC alarm or reminder occurs, the reason and the troubleshooting are displayed below the message line.

Clearing the alarm: Press to cancel the alarm. About some alarms, refer to the reason and troubleshooting.

- Note 1: When PLC alarm or reminder occurs, the address A message is displayed in black color below the message line;
- Note 2: When CNC alarm or reminder occurs, the reason and the troubleshooting is displayed in black color below the message line.
- Note 3: The alarms of #0——#1000 are CNC ones; the alarms of #1000——#2000 are PLC ones, those after #2000 are reminder message.
- Note 4: When the parameter becoming valid after power-on is rewritten, the alarm can be cleared only after power on, again.
- Note 5: Please refer to Appendix One Alarm Message List and Appendix Two PLC Alarm Explanation about the detailed alarm message and PLC alarm.

3.5.2 History Record

MESSAGE

Press key to enter the message interface and then press HISTORY

to enter the previous record interface. The interface records the latest previous alarm message, which includes the alarm date, the alarm time, the alarm number and the alarm content. The alarm

note message can be checked by pressing \square , \square , \square , \checkmark , the page is shown in Fig. 3-52:

MDI	RESET	ALAM(1/1):A	LARM 400
信息 -> .	历史记录	-> 报警记录	
	alm No.	content	alarm time
Å INFO	11003	Axis Z :欠压报警(Er-3)	2014-12-12,11:17:13
🛛 ALAM	6440	File No. 00018 Line 24:找不到指定的顺序号或者程 序段号	2014-12-12,11:18:21
🛛 ALAM	400	Parameter swtich is ON	2014-12-12,11:24:59
🛛 ALAM	450	Please turn off the power	2014-12-12,11:25:07
🔺 INFO	4205	Soft panel enabled, and machine panel stoped.	2014-12-12,11:25:43
🛛 ALAM	400	Parameter swtich is ON	2014-12-12,12:44:20
Å INFO	4205	Soft panel enabled, and machine panel stoped.	2014-12-13,07:07:06
🛛 ALAM	400	Parameter swtich is ON	2014-12-13,08:03:08
🔺 INFO	4205	Soft panel enabled, and machine panel stoped.	2014-12-14,12:05:18
🛛 ALAM	400	Parameter swtich is ON	2014-12-14,12:05:49
🛛 ALAM	450	Please turn off the power	2014-12-14,12:06:24
Å INFO	11003	Axis Z :欠压报警(Er-3)	2014-12-14,12:06:31
🛛 ALAM	400	Parameter swtich is ON	2014-12-14,12:40:45
😢 ALAM	400	Parameter swtich is ON	2014-12-14,13:20:13
			₪.≶ 13:21:
ALA MESS	RM / SAGE H	ALARM CNC 1/0 ALARM LOG ISTORY DIAGNOS DIAGNOSIS	T.COMP. PROGRAM LOG RUN LOG

Fig.3-52

Clearing the previous alarm record: On the page of the previous alarm record, press

CLEAR ALARN

software key to clear the previous records of all alarms and the reminder message,

software key

and the page is blank after clearing.

Note: Whether clear the alarm record is set by parameter 3110.2.

System Diagnosis 3.5.3

MESSAGE

CNC DIAGNOS

software key to

Press key to enter the message interface and press enter the diagnosis page. And then, press System diagnosis button to select the pages of different diagnosis classification data, which is shown in Fig.3-53:

The system diagnosis display page includes the CNC's edit keyboard, hardware interface, bus communication and servo data. Press the corresponding soft keys to switch to the corresponding page.

Edit Keypad Diagnosis

CNC DIAGNOS

After entering CNC diagnosis page, press software key to enter the system

diagnosis page, and then press **KEY** to enter the edit keyboard diagnosis page, which is shown in Fig.3-54

Chapter 3 Display Page

Import
Image: Construct of the second se
'M ^K S ^J T [·] 1 [®] 2 [−] 3 ^{POSTON} ^{POGRAM} SISTEM [®] ① □ ^H U ^V W [®] EOB ⁺ - [*] O ^f . SITTING MESSAGE GRAPH [©] ↓ [©]

Fig.3-54

The edit keyboard diagnosis page mainly disgnosizes CNC edit keyboard is normal or not. Press a key on the edit keyboard, and the corresponding diagnosis message becoming 1 from 0 on the

screen means the key is normal, otherwise it is not normal. Pressing

in the page can view the corresponding key's message. To avoid of creating a corresponding function operation during viewing some key (such as direction key and page up/down

LOCK

key)'s diagnosis message, press **SCREEN** to lock the current screen.

In the edit keyboard diagnosis display page, there are two line of diagnosis number's concrete content display line at the bottom of the page, the first line displays the diagnosis number; the second line displays some bit's definition of the diagnosis number where the current cursor is.

Hardware Interface Diagnosis Page

In the system diagnosis page, press **HARDWARE** to enter the CNC hardware interface's diagnosis page as Fig.3-55:

MDI F	RESET								
MESSAGE ->	DIAGNOS	is -> har	DWARE						
No.	7	6	5	4	3	2	1	0	Ē
0100	Machine	Machine panel id(MDEVID)							
	8								
0101	Machine	panel ha	rdware ver	sion(MHV)					
	101								
0102	Machine	Machine panel softversion(MSV)							
	101								
0103	Machine	panel co	ntinuous c	ommunicat	ion fail	ure times(M	ISERR)		
	0	0							
0104	Machine panel sum of communication failure times(MTERR)								
	2								
0121	count ing	value o	f pulses(H	CTx)					
MP1	0								-
0100 Mac	hine pan	el id							
								₫ 23:4	9:11
∧ SEARC	н								
0 En inte									

Fig.3-55

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

The hardware interface diagnosis display page mainly disgnosizes CNC's each hardware's

version number, mistaken messages and hardware count. Press perform the search function to view the corresponding message.

There is a detailed diagnosis message content display at the bottom of the hardware interface diagnosis display page.

Bus Communication Page

COMMUNICA

In CNC diagnosis page, press **TION** software key to enter the CNC bus communication diagnosis page, which is shown in Fig.3-56:

MDI	RESET			011						
MESSAGE No.	-> DIAGNU 7	515 -> CO 6	JMMUNICATI 5	UN 4	3	2	1	0	P	
0400	FPGA v	FPGA version(VFPGA)								
	120	120								
0410 Connection state of GSKLink(GLM)										
	1									
0411	Curren	t initial	step(STE	P)						
	6	6								
0412	Number of servo slave devices(NUMSER)									
	5									
0413	Number of common slave devices(NUMCOM)									
5										
0420	State of GDT transmission(GDTS)									
0										
0400 F	FPGA versi	on						■ 23:	50:54	
		1		1	1		1	1	T	
∩ SEA	RCH									

Fig.3-56

The bus communication diagnosis display page mainly diagnosizes connection states between the CNC and each bus communication device, and the bus sending data's messages. Press

or perform the search function to view the corresponding message.

There is a detailed diagnosis message content display at the bottom of the bus communication diagnosis display page.

Servo data diagnosis

SLAVE

Press **DEVICE** to enter the servo data's diagnosis page as Fig.3-57:

Chapter 3 Display Page

	- 1								
MD	l F	RESET							
MESSAGE	E ->	DIAGNOSIS	S -> SLAVE	DEVICE					
No.		7	6	5	4	3	2	1	0
0600		MDT data field to servo(PMDT)							
	X	0,0							
	Z	0,0							
0601		AT data f	ield from	servo(PAT)				
	X	1,42							
	Z	0,32							
0606		MDT control field to servo(PMDTC)							
	Х	H:c430							
	Ζ	H:c430							
0607		AT state	field from	n servo(PA	TS)				
	X	H:c018							
	Z	H:c010							
0600	Axi	s X MDT da	ata field	to servo					
									戰 23:51:44
^ SI	EARC	н							
	_								

Fig.3-57

There is a detailed diagnosis message content display at the bottom of the servo data diagnosis display page.

3.5.4 I/O Diagnosis

In CNC diagnosis page, press <u>I/O diagnosis</u> software key to enter I/O unit diagnosis page, which is shown in Fig.3-58:

IV	1DI	RESE	Т							
MES	SSAGE -	> 170	UNIT DIAG	NOSIS ->	I/O unit1					
IZ	0 type	7	6	5	4	3	2	1	0	
		X010	0		<u>,</u>					
		0	U	U	U	0	U	Ø	U	
		0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
DI		0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
									閗 2	3:52:21
	ALAR MESS/	M	ALARM HISTORY	CNC DIAGNOS	I/O DIAGNOSIS	I/O unit1	I/O unit2	I/O unit3		

Fig.3-58

The page mainly diagnosizes the I/O unit's hardware I/O message and I/O unit's hardware's fault. When the PLC diagnosizes I/O output signal is valid and the machine output is invalid, the system

can diagnosize I/O unit's hardware is fault or not. Press

<u>惫г[⊷]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

to view the corresponding message.

3.6 Figure Display Page Set

GRAPH

Press function key to enter the graph page set, and it mainly includes the subpages of setting the graph, the path display, and the graph simulation, and the content displayed in each page can be checked by pressing corresponding software key. Its software layer structure is shown in Fig.3-59:

3.6.1 Setting the Graph Parameters

In the graph page set, press software key to enter the graph setting page, the page is shown in Fig.3-60:

MDI RESET				
GRAPH -> SETTIN	G			ABSOLUTE
TF	RACKVIEW	EMUL	ATION	X 351.8864
WORKPIECE OR	IGIN TOP LEFT	TOOL POST	FRONT	7 9 9999
HRZ AXIS	Z	HRZ AXIS	Z	2 0.0000
				RELATIVE
VET AXIS	X	VET AXIS	X	U 351.8864
SCALE	4	SCALE	4	W 0.0000
Z AXIS SHIFT	(mm) -53.7500	LENGTH(mm)	100	MACHINE
X AXIS SHIFT	(mm) -62.5000	DIAMETER(mm)	100	X 351.8864
		Z AXIS SHIFT(mm) 0.0000	Z 0.0000
		X AXIS SHIFT(mm	0.0000	
				₫ 23:53:10
GRAPHSET	TRACK VIEW EMULATE			

Fig.3-60

Chapter 3 Display Page

On the page, the graph path parameters can be set.

The origin position of the coordinate is set, the horizontal and the vertical axes of the graph are selected, and the offset of the coordinate axis and the magnification times of the graph are set; the horizontal and vertical axes, the graph simulation magnification scale and the coordinate axis offset should be set.

On the right column of the page, the current absolute position coordinate and the relative coordinate position values and the tool number used by the current running program are displayed meanwhile.

Press 1, 1 key to switch among each item and press 1, 1 to switch among the data of two channels. In MDI status, the graph parameters are rewritten with the digit key and the

backspace key, the numerical value to be rewritten is input, and press key to confirm the setting is completed. About the detailed operation, refer to Chapter 8.1.

3.6.2 The Machined Graph Path Display

On the graph page set, press _______ software key to enter the path display page, which is shown in Fig.3-61:

MDI	RESET		
GRAPH ->	TRACKVIEW -> ZX PLANE	ABS	DLUTE
PRØG		x	351.8864
		z	0.0000
		REL	ATIVE
		U	351.8864
		W	0.0000
		MAC	IINE
		x	351.8864
		z	0.0000
		÷	0000
	plane:7X scale:4,000		0000
			毗 23:53:52
GRAP	HSET TRACK EMULATE AUTO CENTER ZOOM IN ZOOM OUT C	LEAR	RECOVER

Fig.3-61

The coordinate plane displayed by the current path and the scaling of the path graph are displayed below the path display screen.

On the right column of the page, the current absolute position coordinate and the relative coordinate position values and the tool number used by the current running program are displayed meanwhile.

Then, the graph can be scaled up/down, the path can be cleared, and meanwhile, the graph can

Note: Each axis name is set by the parameter #1020 and the different letter names are set for each axis.

3.6.3 Simultaneous Graph Display

In the graph page set, press software key to enter the simultaneous graph display page, which is shown in Fig.3-62:

The coordinate plane displayed by the current simulation graph and the scaling of the simulation graph are displayed below the graph simulation screen.

The graph can be scaled up/down, the path can be cleared, and meanwhile, the graph can be

moved upward/downward/leftward/rightward by pressing

Note: Each axis name is set by the parameter #1020 and the different letter names are set for each axis.

3.7 Help Page Set

HELP

Press function key to enter the help page set, which is shown in Fig.3-63. The help page set mainly includes the subpages of the operation help, the programming help, the alarm help and the parameter help, etc, and the content displayed by each page can be checked by pressing the corresponding software keys.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 3 Display Page

MDI RESET	
HELP -> OPERATION	
	GSK988T system mainframe plane is adopted 8.4"LCD, its function as follows: It is adopted GSKLink servo unit, and it can be achieved servo parameter read-write and servo unit real-time monitor. In-board multiple PLC programs, PLC ladder diagram edit on line and real-time monitor Parts parogram background edit It owns internet interface, supports remote supervisory and file transmission It owns USB interface, supports disk U file operation, system configuration and software upgrade
	page 1 / 2
	風 23:55:50
OPERATION G	N ALARM PARAMETER

Fig.3-63

Each subpage can be divided into two parts: the left directory and the right corresponding content. The following shortcut keys can be operated:

Content: Page up key: Page up for one page in the content;

Page down key: Page down for one page in the content;

Directory: Upward key: Check the previous directory;

Downward key: Check the next directory

Leftward key: Return to the up one level directory;

Rightward key: Open the next level directory;

Switch key + page up key: Page up for one page in the content;

Switch key + page down key: Page down for one page in the content;

Moreover, the search function exists in the programming help, in the alarm help and in the parameter help, and G code, the alarm number and parameter number can be input in the corresponding interface, which is shown in Fig.3-64 below. On the programming help page, press

SEARCH

and input G01 in the dialogue box and press Enter. For example, G01 code can be directly found, which is shown in Fig.3-65.

MDI RESET		MDI RESET
HELP -> PROGRAMING		HELP -> PROGRAMING
d=PROGRAMING + DOFFITEN + M.S.T.F + G CODE + MACRO INTPUT COMMAND CODE G01	GSK988T is a new product developed for tilt CNC lathe and turning center, adopts microprocessor of 400MHz high performance, and can control 5 feeding axes (including C axis), 2 analog spindles, real time communication through GSQ ink series bus-bar and servo unit, the related servo motor is equipped with encoder of abosolute type in high-definition, reaches the position precision of 0.14 m level, and satisfies the combined processing requirements of turning and milling in high precision. GSX88T is equipped with internet interface, supports remote monitor and files transmitting, and satisfies the requirements of internet education and workshop management.	POGRAMING + OVERVIEW + K.S.F.F - 64 CODE - 600 - 600 - 600 - 600 - 600 - 602 - 603 - 604 - 604 - 612.1 - 613.1 - 613 - 613 - 619 - 619 - 619 - 619 - 621 - 619 - 619 - 622 - 623 - 624 - 625 - 625 - 625 - 625 - 625 - 625 - 625 - 625 - 625 - 627 - 627 - 627 - 627 - 628 - 627 - 628 - 627 - 628 - 627 - 628 - 628 - 627 - 628 - 628 - 627 - 628 - 628 - 627 - 628 - 628 - 628 - 628 - 629 - 628 - 629 - 6
	page 1 / 3	LCNA I page 1 / 4
	戰 23:56:50	覧_23:57:2
OK CANCEL		OPERATION PROGRAMIN ALARM PARAMETER SEARCH

Fig.3-64

Fig.3-65

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chapter 4 Editing and Managing the Program

Chapter 4 Editing and Managing the Program

On the program page, the program can be searched, created, selected, copied and deleted, and the program can also be imported and exported.

To prevent the program is rewritten and deleted by accident, GSK988TA/988TA1/988TB sets the program switch. After editing and rewriting the program, the program switch must be ON; And about the details of setting the program switch, refer to Section 3.4.2.1.

Note: The file with the name 'NCPROG' is on the U disc, and the file is placed on the file, the operation on the U disc directory is consistent with that of the local directory on the program page, please refer to the operation of the local directory when the U disc directory is used.

4.1 Creating a Program

4.1.1 New a Program

When the operation authority level is equal to or higher than level [4], the program can be created and edited.

Fig.4-1

REDO

LOAD

SAVE

UNDO

LOCATE

COPY BLK PASTE BLK DEL BLK

>

4.1.2 Opening a Program

1	00012(00012)-	
2	#5 = #2:	X 351.8864
3	IEF#2 EQ 0] THEN #3000 = 1:DIV ZER0:	
Å.	WHILEF#5 GT 0] DO 1:	7 0 0000
5	#6 = #6 + #3/#2	Z 0.0000
ő	G#1 1 H#6 W#4:	
7	#5 = #5-1:	RELATIVE
8	END 1:	
9	60:	U 351.8864
10	M99	
iĭ	:	
	2	u.0000
		MACHINE
		X 351.8864
		7 0 0000
		Z 0.0000
		T 0000
		助 0:00:0
1		
^ ι	.OAD SAVE UNDO REDO LOCATE COPY BLK PAS	te blk del blk 🕻

Fig.4-2

Then, the current program can be edit or rewritten, while the current executed program can only be edited in Edit mode.

Note: When the parameter 3404.6 is 0, the program must be with the end codes M02, M30 and M99, etc;

otherwise, when software key is pressed during checking the program, the reminder will be popped up; and the alarm occurs when the program is running.

4.1.3 Renaming a Program

On the program page set, press	nove the cursor for selecting the program and
--------------------------------	---

Chapter 4 Editing and Managing the Program

RENAME press softv	vare kev to rename the selec	ted program.	Input the new	program name on
	INFUT FRG NHME			
	RENAME PRG00010			
	0		OK	
the pop-up dialogue box		and press		software key to
		CANCEL		
rename the selected progr	am and to return. Press 📃		software key to	cancel renaming
and the system returns to t	he previous menu.			
Note 1: No renaming the load	ed or running file.			
Note 2: Only when the oper renamed.	ation authority level is equal t	to or higher t	han level [4], th	e program can be

4.1.4 Saving as

Or	n the progra	am page set, press	<u>۲</u>	Û	keys to m	ove the curs	or for selec	ting the program,
press	SAVE AS	software key to sa	ve the	sele	cted prog	ram as the	other nam	ne. Input a new
progra	m name in	pop-up dialogue box	SAVE PRI	GD0010	AS	and press	ОК	software key to

save the program as the other name. For example, input 2222, press **CANCEL** software key to save #00010 program as #O2222 one, and the cursor is jumped into the new program name, which is shown as Fig.4-3:

MDI	RESET					
PROGRAM	-> LOCAL DIREC	TORY				
prog acou	unts: 21	size(byte): 1,6	03, 395	free(byte)	: 34,369,024	
name 00000 00001 00002 00003 00004 00005 00006 00007 00008 00009 00009 00009 00009 000010 00011 00012 00013 00013 00013 00013 00013 00014 00015 00016 00017 00018 0019 </th <th>size(byte) 788 1,598,328 52 54 130 232 63 55 91 110 150 111 137 252 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20</th> <th>modified time 2014-09-28,08:10:0 2014-11-12,21:38:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-12-16,23:58:4 2014-12-16,23:58:4 2014-12-4,08:34:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0</th> <th>▲ na 88 11 88 88 88 88 88 88 88 88 88 88 88</th> <th>me 00012 5 = #2 = #2 EQ 0] TH HILEE#5 GT 0] 5 = #6+ #3/#2 #1 U#6 W#4 5 = #5-1 ND 1 3 39</th> <th>HEN #3000 = 1;C] DO 1</th> <th>IIV ZERO</th>	size(byte) 788 1,598,328 52 54 130 232 63 55 91 110 150 111 137 252 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	modified time 2014-09-28,08:10:0 2014-11-12,21:38:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-12-16,23:58:4 2014-12-16,23:58:4 2014-12-4,08:34:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0 2014-09-28,08:10:0	▲ na 88 11 88 88 88 88 88 88 88 88 88 88 88	me 00012 5 = #2 = #2 EQ 0] TH HILEE#5 GT 0] 5 = #6+ #3/#2 #1 U#6 W#4 5 = #5-1 ND 1 3 39	HEN #3000 = 1;C] DO 1	IIV ZERO
					a 1	0:00:45
0	K CANCEL					

Fig.4-3

Note: Only when the operation authority level is equal to or higher than level [4], the program can be saved as the other name.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

key to move the cursor for

4.1.5 Deleting a Program

(1) On the program page set, press

DELETE

selecting the program to be deleted, and the background of the selected program is changed into green.

(2) Press

software key to delete the selected program.

4.1.6 Outputting a Program

The system USB port is with the USB flash disc, an U disk icon spears at lower right corner of the screen, and there is a key for an U disk catalog in the program page, which is shown in Fig.4-4.

IV	IDI	RESET								
PRC)GRAM ->	USB DIREC	CTORY (U: /NCPROG)						
pr	og acour	ts:4								
	name	size(byt	e) modified	time		name	00000			
	00000 00004	788 130	2011-10-2 2011-06-0	2 <mark>1,10:11:32</mark> 07,10:02:08		0000	0(高温箱拷	机程序)		
	00008	91	2011-06-0	07,10:02:08		G50	X300. Z500	•		
	00012	137	2011-06-0	07,10:02:08		G98	G00 X-100.	Z-200.		
						G90	U-10. W-20	0. F500.		
						G90	U-10. Z-30	0. R-2.5 F	350.	
						G00	X90.Z100.			
						G74	R0.5			
						G74	X0. W-10.	P30000 Q50	000 R1.5	
						F300).			
						GAA	7190			
						671	112 5 RA 5			
						671	P10 050 111	W1 E250		
						M10	C00 11 E0	. WI. 1250	•	
						NDO	G00 U-30.	00 10 1/	10 5150	
						NZØ	G3 X60. 21	80. 10. K-	10. F150.	
						N30	GZ 05. Z15	5. KZ00. F	200.	
									₩ 🍜 0:05	:14
	SEAR	H RENA	ME SAVE AS	DELETE	OUTP	UT	SORT BY NAME	SORT BY SIZE	SORT BY TIME	>

Fig.4-4

The programs of the USB flash disc directory can be copied into the local one by pressing

OUTPUT software key, vise versa. Th	e files in the USB flash disc are copied into the system,
the detailed steps are as below:	
(1) Press USB software ke	y to enter the USB flash disc file directory;
(2) Press	select the programs to be copied, and press \ge and
OUTPUT , the selected programs in the	USB flash disc are copied into the local directory;
(3) Similarly, the programs of the	local directory are copied into the USB flash disc,
LOCAL software key is directly press	sed to enter the system program file directory.

Chapter 4 Editing and Managing the Program

(4) The program to be copied is selected by pressing \square ,

OUTPUT

software key **and a selected** is pressed, the selected program in the local directory is copied into the directory of the USB flash disc;

(5) When the copied program has been existed, the pop-up dialogue box

File OOOO1.CNC already exists. Whether to cover it	?
[YES] Cover it	
[ND] Save as	
[CANCEL] Cancel	

will remind: The program has been existed, whether cover it?

(6) Press "Yes" software key to cover the existed program, press "No" to remind the program is saved as the other name, press "cancel" to cancel the operation.

- Note 1: Only the operation authority level is equal to or higher than level [4], the program can be copied and pasted.
- Note 2: If the output file is too big, the copying time is too long and the progress bar will be displayed; the page can be switched and other operation on the pages can be executed during coping.

4.1.7 Arranging a Programs

SORT BY NAME SIZE TIME

program arrangement sequence will be switched between ascending and descending order of each arranging sequence.

4.2 Rewriting a Program

4.2.1 Editing a Program

Based on the steps introduced in Section *4.1.2*, a new program is created, which is shown as Fig. 4-5:

MD	RESET								
PROG -	> LOCAL DIRECTORY	<pre>/ -> PRGE00123</pre>	3]	not select	ed		ABSC	DLUTE	
1	00123(00123);						x	351.88	64
Z	E.								
							z	0.00	00
						ſ	-REL/	TIVE	
							U	351.88	64
							W	0.00	00
							MACL		
							PIAGE	TINE	
							x	351.88	64
							_		
							2	0.00	00
							Т	0000	
								₫ 23:59	:06
			DEDO	LOOATE		DAOT			1
	LUAD SAVE	UNUU	KEDU	LUCATE	CUPY BLK	PASTE	E BLK	DEL BLK	1

Fig.4-5

Introduction of the software keys on edit interface

After the program editing is completed, the program can be executed after pressing the key, and the page is skipped into the position page set and the just loaded program

is displayed in the program column of the position page set. Press **AUTO** key to switch into

key to execute the loaded program.

Auto mode and press

Save the currently editing program.

The operation of one step before editing the program can be canceled by pressing the key (the operation of the maximum latest 10 steps can be cancelled.).

The just cancelled program can be restored by pressing the key.

the key.

: The block on which the cursor is can be copied.

The just copied block can be pasted on the position on which the cursor is by

pressing the key.

DEL	. BLK	: The block	on which	the curso	r is ca	n be	deleted	by pressir	ng the key.	
On	the	current	page,	press	>	,	the	three	software	keys

Chapter 4 Editing and Managing the Program

SE	EARCH	PRG C	HECK CALCUL	ATOR occur.			
	SEARCH	: Th	e character stri	ng can be rapi	dly fou	nd by pressing	the key and the cursor is
positi	ioned behi	ind the	e character str	ring which has	been	searched. Du	ring searching, the three
searc	shina mode	es of	FROM TOP	NEXT	and	PREV	can be selected
Scarc	ming mout						
F	PRG CHEC	к	fter the progr	am is edited	press	PRG CHECK	software key to check
 بطار مارر		, , ,		arran if it has	p. 000		

whether the program has the syntax error; if it has, the reminder will occur below the screen, and the program should be checked and rewritten based on the reminder.

Note:

1: When the parameter 3404.6 is 0, the program must be with the end code, like M02, M30 or M99, etc;

Otherwise, the system reminds the error during checking the program after pressing software key, and the alarm occurs when the program is started.

- 2: The big file exceeding 10,000 lines can't be edited.
- 3: Besides manually saving programs, the CNC system owns an automatic save function during the course of edit, and it automatically saves files every 90 seconds.

CALCULATO

: the CNC system owns an automatic save function. To count some points during CALCULATO

programming, press the soft key R, and the system pops up a counter which is shown in Fig.4-6.

Fig.4-6

CALCULATOR

The system is with the calculator. If calculation is required during programming,

CALCULATOR

software key is pressed, the calculator will be popped up.

R

RESULT	e equal to "=" in the counter.
CLEAR	-: clear the counter's data.
SEND DATA	send the current counter's value to the page where the cursor is.
CANCEL	exit the count function.

4.2.2 Rewriting a Program

- (1) The program is opened based on Section 4.1.4;
- (2) The cursor is moved toward the program line to be rewritten by pressing

	, ↓ _{keys;}	the cu	ursor is move	d toward the character to be rewritten by
pressing	⊐ , ⇔ _{key}	s; the	block or the c	haracter to be rewritten can be rapidly found
by pressing	LOCATE	and	SEARCH	,

BACK

key;

BACK

(3) The program code is rewritten based on the address and the numerical keys on the edit keypad;

(4)	One	character	before	the	position,	on	which	the	cursor	is, is	deleted	by	pressing
key;													

(5) One character after the position, on which the cursor is, is deleted by pressing

	SAVE		
(6) Press		software key to save the currently	/ rewritten program.

4.2.3 Shortcut Keys

During the program editing, the system provides some shortcut keys to edit and rewrite the program.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 4 Editing and Managing the Program

4.3 Block Notes

When the block should be explained, press "EOB" and add "; "after the block to be explained, the content after "; " is the note.

Example:

O0001;

G50 X0 Z0; The coordinate zero is set;

G00 X100 Z100; Rapidly move to the position of X100, Z100;

M30;

In the above program, the note is added in the 2^{nd} and the 3^{rd} blocks. The content after the 1^{st} semicolon is the note, and the 2^{nd} semicolon is the block end code and the 2^{nd} semicolon is

automatically added by the system after pressing for line feed when one block editing is completed.

Note: Because the system doesn't support the input in Chinese; if the Chinese note should be input, it should be edit on the computer.

4.4 Generating a Block Number

In the program, the block number can be input or not, the program is executed based on the inputting sequence (except for calling).

On the setting page set, CNC sets the page, when "automatic sequence number" switch is OFF, CNC doesn't automatically generate the block number, while the block number can be input manually during programming.

On the setting page set, when "automatic sequence number" switch is ON, CNC automatically generates the block number, and the block number of the next block is automatically generated by

INPUT

pressing key for line feed, and the incremental value of the block number is set by CNC data parameter #3216.

4.5 Program Backstage Editing

PROGRAM

When Auto or DNC mode is being operated, the key is pressed to enter the program page, and the program to be edited can be opened or created, the operation method is same as that introduced previously.

Note 1: The currently running program can't be edit;

Note 2: key can't be pressed when Auto or DNC mode is being operated and the program is being edited at the backstage; otherwise, the running program will stop due to resetting.

4.6 Program Run

In Auto or MDI mode, press Key after the program is open, and the program automatically runs.

Chapter 5 Manual Operation

Chapter 5 Manual Operation

5.1 Manual Reference Position Return

A CNC machine tool is provided with a fixed position for setting the position of the machine worktable. And the fixed position is called as the reference position. Normally, tool change or setting the coordinate system is performed at this position. After power on, the tool is moved into the reference position. Manual reference position return is to move the tool into the reference position by the switches and the buttons on the operation panel.

The three methods of setting GSK988TA reference position: zero return with the block, zero return without the block and zero return of the absolute encoder.

Setting the reference position with the block:

When the parameter DLZx (the 1st bit of #1005) is 0, setting the reference position without the block is invalid (Setting the reference position with the block is valid), and the machine tool can return the reference position only after installing the deceleration switch.

Detailed process: The tool is moved in the direction specified by the parameter ZMI (the 5th bit of #1006), the tool is moved to the deceleration point at the rapid traverse rate and returned to the reference position at FL speed. The reference position return finish lamp (LED)

 $x \circ y \circ z \circ 4$ is ON, and the reference position return ends and the coordinate system is automatically set.

Note: Each axis rapid traverse rate, the rapid movement override F0 speed and FL speed of reference position return is respectively set by the parameters (#1420, #1421 and #1425).

Setting the reference position without the block:

When the parameter DLZx (the 1st bit of #1005) is 1, setting the reference position without the block is valid. The machine tool can return the reference position without installing the deceleration switch.

Detailed process: After the machine tool is powered on each time, the reference position return is executed, the tool is moved in the direction specified by the parameter ZMI (the 5th bit of #1006). After the system detects the 1st PC signal of the motor, the reference position return finish lamp (LED)

 $x \circ y \circ z \circ 4$ is ON, and the reference position return ends and the coordinate system is automatically set.

Note: Because setting the reference position without the block is to detect the 1st PC signal of the current position and it is taken as the reference position, so the set reference positions after power on may be different, the tool offset must be reset with the method.

Setting the reference position of the absolute encoder

When the machine tool is configurated with the absolute position encoder and the absolute position encoder reference position function is valid, the reference position return of the absolute position encoder should be executed when the system hasn't set the reference position. After the tool is returned to the reference position, the reference position return finish lamp (LED) is ON, and the coordinate system is automatically set.

Steps of reference position return:

- (1) Press the reference position return switch REF. RETURN, and it is one of the mode selection switch;
- (3) After pressing the feeding axis corresponding the reference position return and the direction

selection switch **Line 1**, the reference position return is started. The tool is moved to the deceleration point at the rapid traverse rate (The absolute position encoder zero return doesn't have the deceleration point and it can be directly returned to the reference position), and the tool is returned to the reference position at FL speed set by the parameter. After the tool is returned to the reference position, the reference position return

finish lamp (LED) $x \bigcirc y \bigcirc z \bigcirc 4th \bigcirc c \bigcirc$ is ON;

(4) The same operation is executed for other axes.

- Note 1: The manual reference position return can only be returned to the 1st reference position, the coordinate system is automatically set after the manual reference position return ends.
- Note 2: Once the reference position return is completed, "the reference position return finish" indicator lamp is ON, the machine tool doesn't move unit the reference position return switch is OFF.
- Note 3: When "leaving off the reference position" is executed, the reference position return finish indicator lamp is OFF.
- Note 4: The direction of each axis reference position return is set by the 5th bit of the parameter #1006.
- Note 5: The 2nd bit of the parameter 1404: After setting the reference position, the reference position return is executed in Manual mode, the tool is moved to the reference position at the rapid feedrate or at the manual rapid feedrate.
- Note 6: After setting the system reference position with the absolute encoder, the system automatically sets the coordinate system after power on, again without setting the reference position. About the non-absolute encoder system, the system should execute the reference position return after power on, again.

The above mentioned is one example, please refer to the user manual from the machine tool builder for operation.

5.2 Manual Feeding

In manual mode, press the feeding axis and the direction selection switches on the machine operation panel and the machine tool is moved along the selected direction of the selected axis. Each axis manual continuous feedrate is set by the parameter (#1423), and each axis manual continuous feedrate is adjusted by the manual continuous feedrate override dial.

Feedrate override dial

Chapter 5 Manual Operation

After the rapid movement switch RAPID is pressed, the machine tool is moved at the rapid traverse rate (#1424 parameter) no matter where the position of the manual feedrate override dial is, and the function is called as the manual rapid movement. Many axes can be moved meanwhile in Manual mode.

Manual feeding steps:

- (1) Press the manual continuous switch MANUAL, and it is one of the mode selection switches;
- (2) Press the feeding axis and the direction selection switch tool is moved along the corresponding direction of the corresponding axis. After the switch is pressed, the machine tool is moved at the feedrate set by the parameter (#1423); after the machine tool is released, the machine tool feeding stops;

<u>مر</u>

C/S

(3) The manual continuous feedrate is adjusted by the manual continuous feedrate override dial;

(4) If the rapid traverse switch RAPID is pressed when the feeding axis and the direction selection switches are pressed, the machine tool is moved at the rapid traverse rate when

the rapid traverse switch is pressed, and the rapid movement override we we was a solution of the second se

The above mentioned is one example, please refer to the user manual from the machine tool builder for operation.

- Note 1: Acceleration/deceleration: the manual rapid traverse rate, the time constant of acceleration/deceleration and the acceleration/ deceleration mode can be set by the parameters 1610 and 1624.
- Note 2: Changing the mode: during manual feeding, the manual feeding is invalid when the mode is switched into the other mode. The manual feeding mode is entered firstly, and then the feeding axis and the mode selection switches are pressed, and then, the manual feeding is valid.
- Note 3: Rapid movement before reference position return: if the reference position return isn't executed after power on, the button of "rapid traverse" is pressed, the rapid movement can't be executed while the manual continuous movement is maintained. The function is set by the parameter RPD (bit 0 of #1401).
- Note 4: Whether the manual override is valid in Manual mode is set by bit 2 of parameter 1402, and the override is fixed as 100% when the manual override is invalid.

5.3 Incremental Feeding

Whether the incremental feeding is valid or not in Manual mode or MPG feeding mode is set by the parameter JHD (0 bit of #7100), and the corresponding relation is shown as the following list:

	JHE	D=0	JHD=1	
	Manual mode	MPG mode	Manual mode	MPG mode
Manual feeding	0	×	0	×
MPG feeding	×	0	0	0
Incremental feeding	×	×	×	0

O: Valid

×: Invalid

In incremental mode. press the feeding axis and the direction selection switch

₹ S @	• A	eth @4th		
Z Z @Z			C/S	
	R	Ŷ	٦	

on the machine tool operation panel and the machine tool is moved one step in the selected axial direction. The minimum distance moved by the machine tool is the minimum input increment. Each step can be 1 time, 10 times or 100 times of the minimum input increment. The incremental feeding steps:

R

(1) Press MPG to select MPG mode;

(2) The movement distance of each step is selected by the override switch лх10 лх100 лх100 **Л**Х1 **W FO**

Moreover, the single step movement distance selected by the override

```
€ 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% € 100\% €
```

LX100 LX1000

switch 0.50% 0.100% can be rewritten by the parameters 7113 and 7114;

is pressed,

the machine tool is moved along the selected axial direction. The switch is pressed once, the machine tool is moved one step and the feedrate is the manual rapid traverse rate.

(4) The rapid movement switch is invalid during pressing the feeding axis and the direction selection switches.

Note: The least input unit (input) and the least code increment (output) is set by the 1st bit of the parameter #1004.The least input increment is the minimum unit of the program movement distance, and the least code increment is the minimum unit of the tool movement on the machine tool, and two increments are represented by mm or inch.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chapter 5 Manual Operation

5.4 MPG Feeding

MPG Press

key to enter MPG mode, the MPG outline is shown as Fig.5-1:

Fig.5-1

In MPG mode, the machine tool can be continuously moved by MPG on the machine tool operation panel. The moving axis is selected by the switches is very the selected by the switches is rotated for one scale, the minimum distance moved by the tool equals to the least input increment. When MPG is rotated for one scale, the tool movement distance can be scaled up for 10 times or for two magnifications set by the parameters (#7113 and #7114). Steps of MPG feeding:

(1) Press key to enter MPG mode;

(2) Press MPG feeding axis selection switch axis to be moved by the machine tool;

JLX1

лx10

JLX100

JT_X1000

JLX100	JLX1000

override selected by the override switches 10000 can be rewritten by the parameters 7113 and 7114;

(4) After MPG is rotated, the machine tool is moved along the selected axis and MPG is rotated for 360 degrees, and the machine tool movement distance equals to that of the current pulse equivalent *100.

The MPG feeding direction is set by MPG rotation direction. Normally, MPG CW rotation is positive feeding, CCW rotation is negative feeding.

The above mentioned is one example, please refer to the user manual from the machine tool builder for operation.

Note 1: In manual mode (JHD), the validity of MPG;

Whether MPG is valid in Manual mode is set by the parameter JHD (bit 0 of #7100), MPG feeding and incremental feeding all are valid when parameter JHD (bit 0 of #7100) is set as 1.

The corresponding relation is shown as the following list:

	JH	D=0	JHI	D=1
	Manual mode	MPG mode	Manual mode	MPG mode
Manual mode	0	×	0	×
MPG mode	×	0	0	0
Incremental feeding	×	×	×	0

O: Valid

×: Invalid

Note 2: The manual pulse generator (MPG) executed speed exceeds the rapid traverse rate (HPT):

The specification of parameter HPT (the 4th bit of #7100):

Setting as 0: When the feedrate is limited in the rapid traverse rate, the pulse exceeding the rapid traverse rate is invalid (The machine tool movement distance may be not consistent with the scale of MPG).

Setting as 1: The feedrate is limited in the rapid traverse rate, and the pulse exceeding the rapid traverse rate is valid and accumulated in CNC.(Although the MPG is not rotated, the machine tool can't stop immediately. After MPG stops, due to the effect of the pulse in CNC, the machine tool still moves.) The allowable value of the memory is set by the parameter #7117, then, the exceeding pulse is also ignored.

Note 3: The axis movement direction and the rotary direction of MPG:

When the tool is moved along the axis, MPG direction is switched by the parameter HNGx (0 bit of #7102) and it is corresponding to the rotation direction of MPG.

Note 4: Quantity of MPG:

Maximum two manual pulse generators can be connected, which is set by the parameter #7110. Two manual pulse generators can operate one selected axis meanwhile.

5.5 MPG Retreating

The MPG retreating function is to use the MPG (manual pulse generator) in automatic run to make the program positively/reversely move. The actual machine operation and executing the MPG can simply check the program errors.

Check mode

In the mode, execute the program along the clockwise or anticlockwise to check programs. To set to the check mode, the CNC should be in the automatic run mode and the check signal MMOD<G67.2> is set to 1. When the CNC is set to the check mode and the program positively move. It is set to a check mode, the system creates a reverse moving data when the program positively moves. To execute the motion which is synchronous with the MPG's pulse in the check mode, besides executing the above settings, set the MPG check signal MCHK<G67.3> to 1. Thus, execute the MPG's program check.

Positive movement

The "positive movement" is to make the program clockwise execute by the MPG positively rotating(MPG check signal MCHK<G67.3> is "1"). The program' execution speed and MPG's speed are proportional. Once the MPG rapidly rotates in positive direction, the speed quickens. When the MPG slowly rotates in positive direction, the speed becomes slowly.

Chapter 5 Manual Operation

Reverse movement

The "Reverse movement" is to make the positive movement's blocks being reversely executed by the MPG reversely rotation (anticlockwise rotation). The reverse program's execution speed and the MPG' speed are proportional.

5.5.1 MPG Retreat Operation Method

In automatic run mode, set the check mode signal MMOD<G67.2> to "1" and set the CNC to the check mode, start executing the program by the cycle start.

This moment, when the MPG check signal MCHK<G67.3> is set to "1", the MPG's pulse controls the program execution in the check mode, and a run which is synchronous with the pulse is executed.

When the check mode signal MMOD<G67.2> in program run becomes "1", the block in the next buffer starts to become the check mode, namely, even if the check mode signal is set to "1", the system does not immediately become the check mode.

When the CNC becomes the check mode, the check mode confirmation signal MMMOD<F91.3> becomes "1".

5.5.2 Speed Control based on the MPG

The MPG's machine movement speed is determined by No.6410 and the MPG override. The machine movement speed is counted according to the following formular during the actual rotating the MPG:

[Code speed]×[1 second' MPG quantity]×[MPG override]×([the parameter's setting value]/100) ×(8/1000)(mm/min or inch/min)

Example :

The code speed is 30mm/min, MPG override is 100, No.6410=1: 1 rotation (100 pulses) /second's speed rotating the MPG, the movement speed is counted by the following formular:

[movement speed]=30×100×100× (1/100) × (8/1000) = 24[mm/min]

Limitation: when the override exceeds 100% because of rapidly rotating the MPG, it is clamped at 100%, namely:

[1 second's MPG quantity]×[MPG override]×([the parameter's setting value]/100) ×(8/1000) When the MPG's pulse exceeds 1, the speed is clamped.

The rapid traverse speed is clamped at 10% speed. When RPO(No.6400.0) is set to "1", the override 100% is clamped. Besides, when No.6405 is set to any values, any override value can be clamped. When No.6405 setting value is more than 100, it is clamped at 100% value. When No.6405 is set to 0, RPO (No.6400.0) setting value is valid.

When the MPG control is executed, the single block stop signal and feed hold signal are invalid. When the single block stops or feed hold completely stops and the cycle start signal is not valid, the program remains stop state.

Blocks for movement and pause can control the program's execution speed by the MPG rotation. For the block only with M, S, T, F code, without movement and pause blocks, the control transfers to the next block even fi the MPG does not rotate.

The spindle speed is different from the MPG's pulse, even if in the check mode, it rotates by the executed speed. The feed per rotation is executed when the spindle speed in the moment is changed to the value equivalent to the feed per minute.

Note: the MPG's retreacting function using the 1st MPG but the 2nd MPG cannot be used.

5.5.3 Rules for Each Code's Reverse Movement

Its modal message is saved when the G code positively moves and it is used when it reversely moves.

G code

When the G making the modal message change reversely moves, its modal message before change is executed.

5.5.4 Notes

- 1. When M2 or M30 is executed, the MPG retreat ends. The CNC cannot execute the reverse movement from M2 or M30 block, the check mode signal and MPG check signal are set to "0" after the program ends;
- 2. In the check mode, the CNC cannot use the dry run, and the dry run signal must be set to "0";
- 3. Cannot switch the workpiece mode during the program execution;
- 4. When M198 calls a subprogram, although it can execute the positive movement, but must not permit the reverse movement operation;
- 5. In the blocks for executing the thread cutting, the MPG pulse is invalid, and the thread cutting is executed at the override 100%, and the reverse movement is forbidden;
- 6. When the MPG retreat reversely moves, the multi-spindle function may create a mistakne operation;
- 7. The axis based on the PLC axis cannot be controlled by the function;
- 8. When a macro program in the MPG retreat is executed, a mistaken movement may occur;
- 9. The system cannot support the cuntion in DNC mode.

Chapter 6 Auto Operation

Chapter 6 Auto Operation

6.1 Auto Operation

The program is preset in the memory, when one program is selected and the cycle start button

ESTARE on the machine tool operation panel is pressed, and the program is started to run and the

cycle start indicator is ON. During cycle start and when the feed hold button feed hold button on the machine tool operation panel is pressed during the cycle start period, and the automatic running pauses and

stops. When the cycle start button is pressed, again, the automatic running is restored. When key is pressed on MDI panel, automatic running ends and the system enters the resetting status.

6.1.1 Select the Program to Run

- (1) Press function key to enter the program page set.
 (2) On the program page set, press , the program page set, program
- cursor to select the program name. Or press key to search the program name to run, the base color of the selected program is green, which is shown as Fig. 6-1:

Option Instantiate Cline 2014-09-28, 08:10:08 328 2014-11-12, 21:38:01 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-11-24, 08:11:15 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08 2014-09-28, 08:10:08	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	a) 8(精度拷机 S700 0) X150 Z452 X50 3) G1 Z400 F0 2) Z340 3) Z325 10 0)	程序)	
2014-09-28, 08:10:08 2020 2014-09-28, 08:10:08 2014-09-28, 08:10;	001 001 001 001 001 001 001 001	018(精度拷机 S700 0 X150 Z452 X50 9 G1 Z400 F0 2 Z340 3 Z325 10 0	程序) 2	
2014-01-12,21.33.01 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:11:15 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	M3 G5 G9 C9 X6 X6 Z3 X8 X8 X8 X8 Z3 X8	\$700 0 X150 Z452 X50 9 G1 Z400 F0 2 Z340 3 Z325 10 0	.2	
2014 09 -28, 08: 10:08 2014 -09 -28, 08: 10:08 2014 -09 -28, 08: 10:08 2014 -11 -24, 08: 11:15 2014 -09 -28, 08: 10:08 2014 -09 -28, 08: 10:08	G50 G90 X60 X60 Z3 Z3 X80 Z3 Z3 Z3 Z3	0 X150 Z452 X50 9 G1 Z400 F0 2 Z340 3 Z325 10 0	.2	
2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	G9 G9 X6: Z3 X8: Z3 X8: Z3	X50 9 G1 Z400 F0 2 Z340 3 Z325 10 3	.2	
2014-01-22,08:11:15 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	G9 X6: X6: Z3 X8: Z3	730 9 G1 Z400 F0 2 Z340 3 Z325 10 3	.2	
2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	Z3 X8: Z3 X8: Z3 X8: Z3	9 GT 2400 F0 2 Z340 8 Z325 10)	.2	
2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	X6: X6: Z3 X8: Z3	2 Z340 8 Z325 10)		
2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	X6 Z3 X8 Z2 Z2	8 Z325 10)		
2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	Z3 X8	10)		
2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08 2014-09-28,08:10:08	X8)		
2014-09-28,08:10:08 2014-09-28,08:10:08	72	2		
2014-09-28,08:10:08		0.0		
		10		
2014-09-28,08:10:08	X9)		
2014-12-03,13:09:26	Z2	70		
2014-11-24,08:34:02	X8	0 Z250		
2014-09-28,08:10:08	72	20		
2014-09-28,08:10:08		V7E 04 7170	E0 000	
2014-09-28,08:10:08	U UZ	X/3.34 Z1/0	.5Z K90	
				土 7:12
		1		
USB MDI CUR/NEXT		NEW	LOAD	OPEN
l	2014-09-28,08:10:08 2014-09-28,08:10:08 JSB MDI CUR/NEXT	2014-09-28,08:10:08 2014-09-28,08:10:08 JSB MDI CUR/NEXT	2014-09-28,08:10:08 2014-09-28,08:10:08 C2 X75.94 Z176	2014-09-28,08:10:08 2014-09-28,08:10:08 JSB MDI CUR/NEXT NEW LOAD

(3)During resetting, press software key, and the selected program is loaded into the block area in the position page set, and it can be executed currently, and the page is skipped into the position display page, which is shown as Fig. 6-2:

efamatic machine tools Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

AUTO RESET	INFO(1/1):INFO 4205
X 451.8647	T 0000
Z 0.0000	S 0 0 rev/mir 0%
PRG NAME [00018] 1 00018(情度共机程序); 2 M3 S700; 3 C50 X150 Z452; 4 G0 X50; 5 G39 G1 Z400 F0.2; 6 X62 Z340; 7 X68 7325:	NC INFO FED OVRI 0% HDL. F X RAP OVRI 100% PART CNT SPI OVRI 50% RUN TIME 49:58:4 JOG. F 0% CUT TIME 00:00:0 取 7:27:42
ABS REL MAC ALL	MODAL SET REL CLEAR PART CNT

Fig. 6-2

6.1.2 Program Running

(2) Press **DICESTANT** to start the program and the program is automatically started and the cycle start indicator is ON. When automatic running ends, the cycle start indicator is OFF. When the last block is specified with M99 and after running ends, the program is repeatedly executed from the program ahead.

(3) To stop during running or cancel the memory running, there are several methods:

1) Memory running stops

Press the feed hold button **FEED HOLD** on the machine tool operation panel. The feed hold indicator lamp is ON while the cycle start indicator lamp is OFF, and the machine tool responds as below:

a. When the machine tool is being moved, the feeding decelerates and stops.

b. When pause (the tool stops) is executed, running stops.

c. When M, S or T function is executed, running stops after M, S or T function is completed.

When feed hold indicator is ON, press the cycle start button **EXCLESTART** on the machine tool operation panel, the machine running is restarted.

2) The memory running end

Press <u>//</u> key on MDI panel, automatic running ends and the system enters the resetting status.

Note: The program running is started from the line on which the cursor is, so firstly check whether the cursor

is on the block to run before pressing **CICLE STARE** key

Chapter 6 Auto Operation

6.1.3 Running from the Arbitrary Block

(1) Press key to enter Auto mode, press software key to enter the program	m
interface and press or large or large key to select the program content page; press	or
1 to move the cursor to the block to run; On the program page set, press 1 or 1	to
select the program to run, press offware key to enter the program edit interface ar	าd
then press or key to move the cursor to the block to start and then press	

(2) If the mode (G, M, T or F command) of the block on which the cursor is, is defaulted, and the mode on which the block is running isn't consistent, the corresponding mode must be executed, and then the following step can be executed;

(3) Press key to enter Auto mode and press to start the program and the program is started form the selected block.

6.1.4 Block Skip

When the symbol "/"is added at the block ahead, press switch to start the block skip

mode, and the block skip indicator is ON, and press were start to run the program, the block is skipped while it's not operated, which is shown as the 4th line of the program: O0001:

G50 X0 Z0; Set the coordinate zero;

G01 X100 Z100; Rapidly move to the position of X100, Z100;

/G0 X0 Z0;

M30;

Press MILE START to run the program and the 4th line is skipped.

6.1.5 G31 Skip

G31 code is edit before the block; during the code is being executed, if the external skip signal (X0.4) is input, the code execution is interrupted and the system transfers to the next block. The function is for dynamically measuring the workpiece dimension (like the grinding machine), the tool setting for measuring, etc, which is shown as the 2^{nd} line of the following program:

O0002;

G31 Z200 F100; During executing the block, if the external skip signal(X0.5) is input, the block is interrupted and the next block is executed.

G01 X100 Z300;

....;

M30;

Note: About the details of G31 skip code, please refer to Programming Manual.

6.1.6 Automatic Running Stop

There are several methods to stop the memory running: Command stopping or press the relative keys on the machine tool operation panel to stop.

• Command stopping (M00, M01, M02, M30)

After executing the block including M00, M01 (the machine tool panel optional stop button is valid), automatic running stops, the modal function and status are all saved. The program running is

continued after pressing CYCLE START key.

After reading M02 or M30 (command at the main program end), the program running ends and the system enters the resetting status.

For the different machine tools, the operations are different. About the details, please refer to the user manual from the machine tool manufacturer.

• Pressing the relative keys to stop

1. During automatic running, after pressing **FED HOLD** key, the machine tool is displayed in the following status:

- (1) The machine tool feeding is decelerated and stopped;
- (2) The modal function and the status are saved.

(1) All axes movements are decelerated and stopped;

(2) M and S function output is invalid (After pressing key, whether automatically switch off the signals like the spindle CW/CCW, lubrication, cooling, etc is set by the parameter);

(3) After automatic running ends, the modal function remains.

3. Press the emergency stop button

During the machine tool running, press the emergency stop button in danger or in the emergency situation, (the external emergency stop signal is valid), CNC enters the emergency stop process, the machine tool movement stops immediately, all output (such as the spindle revolution, the coolant) is

Chapter 6 Auto Operation

switched off. After the emergency stop button is released, the emergency stop alarm is released, CNC enters the resetting status.

4. Switching the operation mode

During automatic running, the system switches into the reference position return, MPG/single step and the manual mode, the current block "dwells" immediately; during automatic running, when the system is switched into Edit or MDI mode, the currently running block stops after running is completed.

Note 1: The emergency stop alarm is released after the trouble is shot;

- Note 2: Before power on or off, press the emergency stop button to reduce the electric shock upon the equipment;
- Note 3: After the emergency stop alarm is released, the reference position return is executed, again to guarantee the correctness of the coordinate position.

6.2 Manual Data Input (MDI) Running

6.2.1 Editing the Program in MDI mode

(1) On the program display page set, press key to enter MDI mode, and the page is shown as Fig. 6-3:

6)

MDI RESET INFO(1/1): INFO	4205
PROGRAM -> MDI	ABSOLUTE
1 ;	X 451.8647
	Z 0.0000
	RELATIVE
	U 451.8647
	W 0.0000
MODAL	X 451.8647
G 600 697 698 621 640 625 622 680 667 618 613.1 664 650.2 654	Z 0.0000
S 0 rev/min	
F 0 mm/min M	T 0000
	₫ 7:29:28
LOCAL USB MDI CUR/NEXT DEL	BLK CLEAR

(2) On the program edit column below the block (MDI), input the block (maximum 10 lines) to run, the method of editing the program to be executed is similar with the common one. The program set in MDI mode is valid for rewriting and deleting the word. About editing the program, refer to the 5th chapter.

(3) After inputting the block, the cursor is moved to the program ahead and the program is started to be executed (if the cursor is on some block, the system is executed from the block). After

pressing

key, MDI command word is started to be executed from the line on which the

cursor is. After the program running ends, M02 program end code is executed and the cursor doesn't return the program ahead; while M30 program end code is executed, the cursor is returned to the program ahead, after the program running ends, the system enters the stopping status.

(4) During running, press key, key, key and the emergency stop button to make MDI command word stop running.

Note 1: Deleting the program

key.

a. In MDI mode, press

software key to delete the block on which the cursor is and press

CLEAR

software key to delete all blocks in MDI edit column.

b. When parameter MCL (NO.3203#7) is set as 1, the program is automatically cleared after pressing

c. When parameter MER (NO.3203#6) is set as 1, MDI program running is completed and deleted in MDI mode.

- Note 2: When MDI running stops, after edit operation ends, were start is pressed for running, again, the running is started from the position on which the current cursor is.
- Note 3: The program created in MDI mode can't be stored.

DEL BLK

Note 4: The sub-program calling and macro program calling functions can not be performed in the MDI mode.

6.2.2 Running from Arbitrary Block

On position display page, in MDI mode, or key is pressed to move the cursor to

the block to be started running, and then **DYCLE START** is pressed to start the program, the program is executed from the block on which the cursor is.

6.2.3 Stopping MDI Operation

Stopping MDI running is similar with stopping automatic running, please refer to the operation method in Chapter 6.1.4.

6.3 DNC Running

GSK988TA/988TA1/988TB is with DNC function, and DNC communication software can be connected with CNC to realize the running at high speed and with the big capacity.

After the machine tool panel key is pressed to enter DNC mode, and PC port is ready, and the machine tool panel cycle start key is pressed to start the program DNC machining.

DNC

Operation

Chapter 6 Auto Operation

About the detailed operation method, refer to DNC communication software.

(1) The machining program is selected and opened with the communication software GSKComm, which is shown as Fig.6-4:

Fig.6-4

(2) Connect CNC system, which is shown as Fig.6-5.

o0001.	CNC - NcProg		
文件(E) 编	辑(E) 查看(V)	工具(T) 帮助(H)	
🗅 🗳 🔒	X 🖻 🖪	DNC传送(<u>D</u>) Ctrl+D	≣ ↑ ≣∦ ?
00000001:	00001(实例加	● 停止DNC传送 Ctrl+Q	^
00000002:	GO X150 Z50	通讯设置(M)	【換刀 📃 📃
00000003:	M12;	米紫卞盈	≡
00000004:	M3 S800;	开主轴,转速8	00 💻
00000005:	M8;	开冷却液	
00000006:	T0101;	换第一把刀	
00000007:	GO X136 Z2;	靠近工件	
00000008:	GO X16;	靠近到工件端面	ā
00000009:	G1 Z-23;	车Φ16外圆	
00000010:	X39.98;	车端面	
00000011:	₩-33;	车Φ39.98外圆	
00000012:	X40;	车端面	×
DNC传送			0:00

Press DNC

(2)

block key to select DNC operation mode, which is shown as Fig.6-6.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

DNC F	RESET				PRG DATA				
V	1	21			т	000	30		
^	4.]1.	00'	+0	F		0	mm/min mm/min	
7		0	00	an	S	0	0 0%	rev/min	
	NAJ.	0.			NC INFO				
					FED OVRI	100% H	DL. F	X1	
					RAP OVRI	F0 Pa	ART CNT	3	
					SPI OVRI	100% <mark>R</mark> i	UN TIME	49:58:44	
					JOG. F	100% <mark>C</mark>	UT TIME	00:00:00	
ABS	REL	MAC	ALL		MODAL	SET RE	EL PART	AR CNT	

(3) The key **CCLESTART** is pressed to start the program, the program is automatically started and the cycle start indicator is ON. When the automatic running ends, the cycle start indicator is OFF, which is shown as Fig. 6-7:

		0						
DNC RESET								
ABSOLUTE					PRG DATA			
X 451		1.	.8646		т	000	3	
					F	(10	2	mm/min mm/min
Ζ		0.	001	20	S	0	0 0%	rev/min
PRG NAME [DNC]					NC INFO			
1 00018(精 2 M3 S700-	既拷机 桯序)	;			FED OVRI	100% HDL	. F	X1
3 G50 X150	Z452;				RAP OVRI	FØ PAR	T CNT	3
4 G0 X50; 5 G99 G1 Z	400 E0.2:				SPI OVRI	100% RUN	TIME	19:58:44
6 X62 Z340	;				.106 F	100% CUT	TIME (10:00:00
/ 868 /3/5	:							8:04:57
400	REI	MAC	ALL		MODAL	SET REL		
ABS							TAIL	CIT

(5) Stopping during running

Press the feed hold button **FEED HOLD** on the machine tool operation panel. The feed hold indicator lamp is ON while the cycle start indicator lamp is OFF. The machine tool is operated as below:

- a. When the machine tool is being moved, the feeding is decelerated and stopped.
- b. When the pause (stopping the tool) is being executed, running stops.
- c. When M, S or T function is being executed, running stops after M, S or T function is completed.

When the feed hold indicator lamp is ON, the cycle start button **DYCLE START** on the machine tool operation panel is pressed and the machine tool running is restarted.

(6) Running stop

Chapter 6 Auto Operation

The key on MDI panel is pressed or M30 command is executed by DNC program, running ends and the system enters the resetting status, which is shown as Fig.6-8:

Fig.6-8

Note: In DNC program, the program calling and the program skip commands can't be executed.

6.4 Automatic Running Status Control

6.4.1 Machine Lock and the Miscellaneous Lock

When the tool isn't moved, while the coordinate position changing is displayed, the machine lock function is used. After using the function, all axes are locked and all axes movements are stopped. Except for that, M, S and T commands are locked by the miscellaneous function. And it is same as the machine tool locked to check the program.

6.4.1.1 The Machine Lock

When the machining program is executed, while the machine remains still, only the tool position change is displayed, the machine can be locked to check the program. When the machine is locked, all axes movements are stopped.

Press the machine locked switch on the operation panel. The machine isn't moved while each axis position on the monitor is being changed. About the machine locked, please refer to the user manual from the machine tool builder.

- Note 1: During automatic running, the position relation between the workpiece coordinate system and the machine coordinate system may be different before and after the machine locked. Then, the command can be set by the coordinate or the workpiece coordinate system can be confirmed with the manual reference position return.
- Note 2: When the machine is locked, G28 or G30 command is sent, although the command is received, the tool can't return the reference position and the reference position return indicator lamp is OFF.

6.4.1.2 M.S.T Lock

M, S or T command is locked by the miscellaneous function, and it is same as the machine locked to check the program.

Press the M.S.T function locked switch MSTLOCK on the operation panel. M, S and T codes are

invalid in the program and can't be executed. About the miscellaneous function locked, please refer to the user manual from the machine tool builder.

Note:

- 1) When the machine is locked, M, S and T commands are still executed;
- 2) Even M.S,T functions are locked, M00, M01, M02, M30, M98 and M99 (the subprogram calling function) commands are also be executed.

6.4.2 Dry Run

Press dry run switch **DRY** on the operation panel, the machine tool is moved at the speed set by the parameter excluding the feedrate specified in the program, and the function is used to check the machine tool movement when the workpiece is removed from the worktable.

Dry run steps:

Before automatic running, press dry run switch on the machine operation panel, the machine tool is moved at the feedrate set by the parameter and the feedrate can be changed by the rapid movement switch. About the details of the dry run, please refer to the user manual from the machine tool builder.

Based on the rapid movement switch and the parameters, the dry run speed is changed as below:

Ranid traverse button	Program co	ommand
	Rapid movement	Feeding
ON	Rapid traverse rate	Dry run speed *JVmax
OFF	Rapid traverse rate or the dry run speed *JV (①)	Dry run speed *JV

JVmax: The maximum scale value of the feedrate override

JV: The scale value of the feedrate override

Note 1: When the parameter RDR (NO.1401 # 6) is "1", the running speed is the product of the dry run

speed *JV; it is "0", the running speed is the rapid traverse rate.

Note 2: The maximum cutting feedrate is set by the parameter #1422;

Note 3: The rapid traverse rate is set by the parameter #1420;

Note 4: The dry run speed is set by the parameter #1410.

Note 5: During automatic running, the dry run can't be switched, while it can be switched during pause.

Note 6: During drilling and boring by G83 and G85, it can be switched into dry run mode after the single block stops or pauses, while the actual cutting speed remains as the original one. After cutting is completed, the speed can be switched. During executing the program, the dry run function can't be real-time switched ON or OFF, and the dry run function is switched only after the single block stops or pauses, it can be switched into dry run function. During drilling and cutting, even the system switches into the dry run mode, the speed remains as the original feedrate (The dry run

Chapter 6 Auto Operation

status is executed at the dry run speed before cutting; otherwise, it is at the commanded speed after cutting), only after cutting is completed, the speed can be changed.

6.4.3 Single Block Running

When the program is executed at the initial time, the single block running can be selected to avoid the unexpected situation due to the programming mistake.

In automatic mode, the method of turning on the single block switch is as below:

The single block switch single block mode, and the single block

running indicator lamp is ON. In the single block mode, when the cycle start button **CYCLE START** is pressed, the machine tool stops after one block of the program execution is completed; if the next block should

be operated, the key **POLESTAT** should be pressed, again, and such operation is repeatedly executed until the program execution is completed. In the single block mode, the program can be checked by executing the program in one block by one block in single block mode.

Steps of single block running:

(1) Press the single block switch on the machine tool operation panel and press the cycle start

button **CCLESTART** to execute one block of the program. The machine tool stops after the current block execution is completed;

(2) Press the cycle start button to execute the next block and the machine tool stops until the block execution is completed.

- Note 1: The reference position return and single block running: The single block of the intermediate position is valid if G28, G29 or G30 command is sent.
- Note 2: The subprogram block and single block running: The single block stops in the block with M98P_; M99; or G65.
- Note 3: About the canned cycle and the multi-level cycle execution in the single block mode, refer to the relative content of the code manual.

6.4.4 Feedrate Override

The programmed feedrate can be reduced or increased by selecting the percentage (%) of the override scale. The characteristic is to check the program. For example, when the feedrate is specified as 100mm/min in the program, the override scale is set as 50% and the machine tool is moved at the speed of 50mm/min.

Steps of changing the feedrate override: Before automatic running or during running, the feedrate override scale on the machine operation panel is set as the expected percentage value (%).

Feedrate override knob

The override is in the specified range from 0 to 150%. For the special machine tool, the range is remarked in the manual from the machine tool builder.

Override during the thread cutting: During thread cutting, the override is invalid and the feedrate specified by the program is maintained.

6.4.5 Rapid Movement Override

The rapid movement speed has override of four levels (F0, 25%, 50% and 100%). Each axis rapid traverse rate is set by the parameter #1420; F0 is set by the parameter #1421.

The steps of changing the rapid traverse override: During the rapid traverse, select one override

with the rapid traverse override buttons WFO M2

The rapid movements of the following types are all valid and the rapid traverse overrides all apply to them:

- (1) G00 rapid traverse
- (2) Rapid traverse in the canned cycle
- (3) Manual rapid traverse
- (4) Rapid traverse of manual reference position return
- (5) Rapid traverse in G28 and G30

6.5 Program Restart

When the tool is damaged in the Auto operation, alternatively, after resting for several days, if the interrupted machine will be restarted from the resting position, the expected restart sequence number of the block, or the program section number (from the beginning to the desired restart block) can be specified; that is, the machining can be performed again from this block.

There are two methods for the restarting:

P: Restart executes when the tool is already damaged.

Q: Restart executes after the power is turned off (after resting for several days) or the ESP is released.

	Program restarts from any position.
туре г	Restart performs when the tool is damaged.

Chapter 6 Auto Operation

6.5.1 Steps of Program Restart

♦ Step one

- Type P: 1. Retract the tool and replace it by a new one. Change the tool offset value in essential. (Enter to the step 2)
- Type Q: 1. When the system is turned on again or the ESP is cleared, the necessary operations should be performed including the reference point return.
 - 2. Move the tool to the program start manually (machining start); modal data and coordinate system are held at same state at the beginning of the machining.
 - 3. Change the offset value if necessary. (Enter to the step 2)
- Step 2 (Type P and Type Q are universal.)

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

1. Press the button on the machine tool operation panel.

PROGRAM RESTART 2. Find and then press the

softkey under the program page, the Fig. 6-9 shows, and

or

then enter the program restart page.

MDI RESET	INFO(1/1)	INFO 42	205
PROGRAM -> PROGRAME RESTART [Dis	able]		ABSOLUTE
target position X	restart infomation		X 351.8762
7	М		Z 0.0000
2		ſ	RELATIVE
			U 351.8762
χ dist to go	S		W 0.0000
	Т	L	MACHINE
Z			X 351.8762
1 00018(精度拷机程序);			Z 0.0000
2 M3 S700;		L	
3 G50 X150 Z452; 4 G0 X50; 5 G99 G1 Z400 E0 2-			T 0000
			🛍 11:13:40
LOCAL USB MDI	CUR/NEXT PROGRAM RESTART LOCAT	E NO.SI	BLOCK EARCH NO.SRH.
	Fig. 6.0		

NO. SEARCH 1. Input the desired restarting program of the N number or the block no. by SEARCH BLOCK SEARCH NO.SRH. and then select the corresponding index mode by the software TYPE P TYPE Q or refer to the Fig.6-10:

Note: The Macro statement, macro program call or subprogram call statement in the block number can also be calculated as the block.

1. After indexing, the page becomes the program restart screen, refer to the Fig.6-11:

Chapter 6 Auto Operation

AUTO RESET		
PROGRAM -> PROGRAME RESTART [Ena	ble]	ABSOLUTE
target position X 62.0000	restart infomation 6	X 351.8765
-	M M03	Z 0.0000
∠ 340.0000		RELATIVE
		U 351.8765
X dist to go -88.0000	S 0700	W 0.0000
	T 0000	MACHINE
Z -112.0000		X 351.8765
5 699 61 7400 F0 2:		Z 0.0000
6 X62 Z340;		
7 X68 Z325; 8 Z310;		T 0000
Searching restart block completed		毗 11:21:35
LOCAL USB MDI	CUR/NEXT PROGRAM RESTART LOCATE	N BLOCK IO.SEARCH NO.SRH.
	Fig.6-11	

Ū

Objective position: The position of starting machining.

Residual movement value: Move to the distance of restarting machining from the current tool position.

Program restart information:

M: Recently specified 35 M codes.

S: The last specified S code

T: Recently specified T code by twice.

The codes are displayed based upon its specified sequence, the overall codes can be specified by the program restart, and the commands can be eliminated at the cycle start in the resetting state.

1. Cut off the **PROG. RESTART** button, check whether the distance of the residual movement value is correct, and confirm whether the tool may touch the workpiece or other materials when it restarts its machining position, if does, move the tool to the position without any other materials by hand.

2. Press the cycle restart button. Tool moves to the restart machining position one axis to another under the dry run speed along with sequence set by parameter (No.7310), and then the restart machining is performed again.

6.5.2 M.S.T Function Treatment of Program Restart

There are two methods for the miscellaneous function M, S and T after indexing the desired restart block; 1: It executes before moving to the restart machining position; 2: It executes before reaching to the restart machining position;

I. It executes before moving to the restart machining position.

(1) The last M,S and T codes can be automatically output to the PLC.

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

When parameter MOU (Bit 7 of parameter No.7300) sets to 1 and MOA (Bit 6 of parameter No.7300) sets to 0, after the desired restart block is indexed, press the cycle start switch; and then automatically output the M, S and T codes to the PLC before the tool moves to the restart machining position.

In the single block stop state, the cycle start switch should be controlled again after outputting the last M, S and T codes, the tool then can be moved to the restart machining position.

As for the last S codes, if the S codes are specified in the indentical block of G50 (G code of set Series A)/G92 (G code of Series B), it will then output as the top spindle speed; the rest of S codes will output as the command spindle speed. However, the last S codes display at the program restart screen is only shown the last specified one S code no matter how it is shared the same block with the G50 or G92.

(2) Also, the overall M codes by sampling and the last S and T codes can be automatically output to the PLC after indexing the desired restart block.

When parameter MOU (Bit 7 of parameter No.7300) sets to 1 and MOA (Bit 6 of parameter No.7300) sets to 0, after the desired restart block is indexed, press the cycle start switch; and then automatically output the overall M codes and the last S and T codes to the PLC before the tool moves to the restart machining position.

However, up to 35 M codes can be sampled. If the M codes to be sample is more than 35, the updated 35 codes is then output to the PLC.

<For example> When collecting the M10, M11, M12, M13, M14, T0101 and S1000, before the tool moves to the restart machining position, the program is performed based upon the following format.

M10 T0101 S1000;

M11;

M12;

M13;

M14;

Whether performing (1) or (2) is shifted by parameter MOA (Bit 6 of parameter No. 7300).

II. It executes before reaching to the restart machining position

When the parameter MOU (Bit 7 of parameter No.7300) sets to 1, during the period after the desired self-index restarting block is performed till to the restart machining position, the corresponding M,S and T codes can be specified in MDI mode.

6.5.3 Function Limitation

1. Type P restart

The Type P restart can not be performed in the following conditions:

(1) When the Auto operation is not performed yet after the power is turned on.

Chapter 6 Auto Operation

(2) When the Auto operation is not performed yet after the ESP resetting is executed.

(3) After the coordinate system or the offset (alter the external workpiece zero offset) is changed, the Auto operation is not performed yet.

2. Restarting block

The restarting block is not the necessary one by interrupting, which can be started from arbitary block. However, if it is the Type P restart, it should be shared the same block with coordinate system during interrupting.

3. Singl block

When th tool moves to the restart position, and when the single block is in the case of the ON, the single block stops after performing each axis operation. However, the MDI interference, in this case, can not be performed.

4. Manual interference

During moving to the restart position, the axis that does not yet perform the operation return is interfered by hand. However, the axis that has been performed the return will not be moved due to the operation return.

1. MDI

After the index is completed, the movement command can not be specified by MDI before performing the axis movement.

6. Resetting

Never attempt to perform the resetting operation during the beginning of the index to the restarting machining. Otherwise, the restarting operation should be performed again from the first step.

7. Feed hold

When the feed hold operation is performed in the index, it is necessary to perform the restarting operation again from the first step.

8. Manual absolute value switch

The manual operation can be performed in the state of the manual absolute method sets to ON (switch on) regardless of the machining is already started.

9. Reference point return

If there is no absolute position detector (absolute pulse encoder), after the power is switched on, the reference position return should be performed before the restarting operation is executed.

10. Program restarting switch

The program restarting will not perform even if the cycle start switch is controlled in the state of power-on.

11. The command can not be restarted the program again.

- Polar coordinate interpolation (G12.1)
- Cylindrical interpolation (G7.1)
- Metric/inch shifting (G20, G21)

<u> ② Г[⊷]州数控</u>

- GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]
- Thread cutting (G32, G33, G34), thread cutting cycle (G92 or G78) and complex fixed thread cutting cycle command (G76)
- Cs outline control
- Tapping command
- Spindle positioning
- Rigid tapping
- Spindle positioning
- 12. Never attempt to use the M, S and T command in the overstored method.
- 13. Macro variable treatment
- Polar coordinate interpolation (G12.1) macro statement, the macro program calling and the block called by subprogram are regarded as attachment with sequence number, and therefore, indexing this block will generate "Fail to find the specified sequence number or block number" alarm. In this case, it is necessary the previous block only.
- If the system variable operation generates during the index procedure, the alarm will then occur.

14. The selected program restarting operation is finish-turning shape block of the G71~G73, the alarm will then issue.

6.5.4 Cautions

- 1. Principally, tool can not return to the correct position in the following situations:
 - It is essential to note that the alarm will not generate in the following conditions.
- The manual operation can be performed in the manual absolute OFF.
- When the manual operation is performed in the mechanical locking.
- There is no coordinate system at the beginning of the program when the main command is incremental method.
- When the manual interference is performed during the axis movement of operation return.
- When one block is specified a restarting program between the skip cutting block and the subsequent absolute command block, when indexing the skip, it is retreated as the current skip switch state.
- When the mechanical locking is eliminated after the program restarting is specified in the mechanical locking state.
- When the block at the midway of the compound fixed cycle is specified the program restarting.
- The coordinate system is set, changed and offset after the indexing is completed.

2. The cautions when the program used with macro variable is performed the program restarting operation.

Common variable

In the program restarting, the common variable uses the previous one instead of automatically resetting. Therefore, the desired variable should be initialized as the value at the last automation

Chapter 6 Auto Operation

operation before performing the program restarting.

• DI/DO

In the program restarting, although the DI can be read based upon the system variable, DO can not be output.

Clock

In the program restarting, although the time can be got from the clock based upon the system variable, the clock can not be reset.

• Tool offset value, workpiece origin offset value

In the program restarting, although the offset value can be read based upon the system variable, the alternation of the offset value is only suitable type Q.

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chapter 7 Tool Offset & Tool Setting

Chapter 7 Tool Offset & Tool Setting

To simplify programming, the actual position of the tool isn't included during programming; GSK988TA/988TA1/988TB provides the tool setting method, like tool setting in the fixed position and the trial tool cutting, and the tool offset data can be acquired by tool setting.

7.1 Setting the Tool Offset Value and Wearing Value

7.1.1 Direct inputting Method

pres

(1) On the setting page set, press **SETTING** software key to enter the tool offset administration page, which is shown as Fig. 7-1:

TOOL

	M	DI	RESET			INFO	1/1):IN	IFO 4	205	
	SETT	ING -	-> T00L	OFFSET					ABSOLUTE	-
	No.	type	e	X	Z	R	T	TA	X 351 8765	
	001	ofse	t	40.0000	0.000	0.000	9			
	001	wea	r	0.0000	0.000	0.0000			7 0 0000	
	002	ofse	t	0.0000	0.000	0.000	9		2 0.0000	
	002	wea	r	0.0000	0.000	0.000				
	002	ofse	t	0.0000	0.000	0.000	0		051 0705	
	003	wea	r	0.0000	0.000	0.0000			0 351.8765	
	004	ofse	t	0.0000	0.000	0.000	9			
	004	wea	r	0.0000	0.000	0.000			W 0.0000	
	995	ofse	t	0.0000	0.000	0.000	0			
	005	wea	r	0.0000	0.000	0.0000			PIAGETTINE	
	000	ofse	t	0.0000	0.000	0.000	9		X 351.8765	
	000	wea	r	0.0000	0.000	0.000				
	007	ofse	t	0.0000	0.000	0.0000	0		Z 0.0000	
	007	wea	r	0.0000	0.000	0.0000				
	000	ofse	t	0.0000	0.000	0.000	9		T QQQQ	
	000	wea	г	0.0000	0.0000	0.0000	, v		1 0000	
									🔍 11:30:56	
	Î	T00	L.	CNC	MACRO SPECIAL			c i		
		SETT	ING S	ETTING	MACRO MACRO	PIEAGOINE +		U.	NEOT SEARCH	
					Eiz	~ 7 1				-
					ΓI	y.7-1				
									_	
					1					크
(2) On the page	e r	ores	ss the	e nade	up key	and r	bade	do	wn key 🗖	to select the page
	ο, μ			page			Jugo			
				\wedge						
				11	47		_			
s the up/down dii	rect	ion	i key	s 🗖	, `	to select t	he to	DOL	offset numb	per to be rewritten and
•			-							
- the left/right dire	ti	~ ~	kava	~	<u>ب</u>	a aalaat th			a al affa at da	to the weering date t
s the len/right dire	ectle	on	ĸeys		, t	o select th	e axi	SI	ooi onset da	ita, the wearing data to
written or Twol		- +	h		d tool noo	a direction		اماد	a ia lika V a	via affect of #001 too

press the left/right direction keys **and**, **and** to select the axis tool offset data, the wearing data to be rewritten or T value in the assumed tool nose direction, which is like X axis offset of #001 tool offset in the above figure; About the corresponding relation of the assumed tool nose, refer to *The Programming Manual*.

(3) The tool offset data, the wearing data or the corresponding assumed tool nose direction number T can be directly rewritten with the digit key and the backspace key; or the selected tool offset

value can be input by pressing key, which is like X axis offset of the tool offset of #001 in Fig. 7-2, and then the tool offset data, the wearing data or the corresponding assumed tool nose direction number T can be rewritten with the digit key and the backspace key;

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

MI	DI	RESET				I	NF0(1/	1):INF	04	205		
SETT	ING ->	TOOL	OFFSET							ABS	OLUTE	
No.	type		Х		Z	R		Т	H	x	351.87	65
001	ofset	40.00	00		0.0000	0.0	000	A				
001	wear		0.00	00	0.0000	0.0	0000	U		7	0 00	66
992	ofset		0.00	00	0.0000	0.0	0000	0		2	0.00	
002	wear		0.00	100	0.0000	0.0	0000	0				
	ofset		0.00	100	0.0000	0.0	000	0				
003	wear		0.00	100	0.0000	0.0	000	U		U	351.87	65
	ofset		0.00	100	0.0000	0.0	000	•				
004	шеаг		0.00	00	0.0000	0.0	000	Ø		W	0.00	00
0.05	ofset		0.00	100	0.0000	0.0	000	•			11115	
005	wear		0.00	100	0.0000	0.0	000	0		MACI	TINE	
	ofset		0.00	100	0.0000	0.0	000	0		X	351.87	65
005	wear		0.00	00	0.0000	0.0	000	Ø				
007	ofset		0.00	00	0.0000	0.0	000	^		z	0.00	00
007	wear		0.00	100	0.0000	0.0	000	0				
	ofset		0.00	00	0.0000	0.0	000	<u>^</u>		÷	0000	
008	wear		0.00	100	0.0000	0.0	000	U		- L	0000	
p											🛍 11:32	:39
	TOOL SETTI	NG S	CNC SETTING	MACRO	SPECIAL MACRO	MEASURE	+ IN	PUT	C I	NPUT	SEARCH	>
_												

Fig.7-2

INPUT

(4) Press key on the edit keypad to confirm inputting or rewriting is completed.

(5) Move the cursor to set the other tool offset value, the wearing value or the assumed tool nose direction T value.

Note: The maximum setting value of the tool wearing compensation value can be rewritten by the parameter 5013.

7.1.2 Measuring Input Mode

(1) On the setting page set, press **SETTING** software key to enter the tool offset administration page;

(3) Press software key to enter the measuring input page for measuring the tool offset value, which is shown as Fig.7-3:

Chapter 7 Tool Offset & Tool Setting

SETT	ING ->	T00L 0	FFSET					ABS	OLUTE
No.	type		Х	Z	R	Т	H	x	351.87
881	ofset		40.000	<mark>0</mark> 0.0000	0.0000	A		1	
001	wear		0.000	0.0000	0.0000	0		7	0 00
882	ofset		0.000	0.0000	0.0000	A		1	0.00
002	wear		0.000	0.0000	0.0000	•		REL	ATIVE
882	ofset		0.000	0.0000	0.0000	a		I	051.07
003	wear		0.000	0.0000	0.0000	0		0	351.87
884	ofset		0.000	0.0000	0.0000	A			
004	wear		0.000	0.0000	0.0000	v		W	0.00
885	ofset		0.000	0.0000	0.0000	A		MAC	
005	wear		0.000	0.0000	0.0000	v		I IAO	
996	ofset		0.000	0.0000	0.0000	A		X	351.87
000	wear		0.000	0.0000	0.0000	0			
007	ofset		0.000	0.0000	0.0000	0		Z	0.00
MEAS	IRF		0.000	0.0000	0.0000	U			
			0.000	0.0000	0.0000	۵		т	0000
-			0.000	0.0000	0.0000	U		- 1	0000
									🗓 11:33
	ОК	CA	NCEL						

(4) In , input "the coordinate axis number + coordinate value" to be measured, press of key for positioning measuring;

(5) Calculating the tool offset value:

FASURE

If the cursor is on the tool offset bar, the tool offset value is cleared into 0, the tool offset value = the relative coordinate value – the input coordinate value;

If the cursor is on the tool wearing bar, the tool wearing value remains unchanged, the tool offset value = the relative coordinate value – the input coordinate value – the wearing value corresponding to the coordinate axis.

Note: The relative coordinate value is the value not set in the relative coordinate in the coordinate system; if the relative coordinate value has been set, the value cleared by the relative coordinate is automatically added.

7.1.3 + Input Mode

(3) Press software key, add one input value to the current selected tool offset value or the wearing value, which is shown as Fig.7-4:

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

M	DIR	ESET				INFO(171) : IN	- 0 4	42	05		
SETT	ING ->	TOOL	OFFSET						Γ	ABS	OLUTE	
No.	type		Х	Z	R		T	f		х	351.87	35
001	ofset		40.000	<mark>0</mark> 0.0000	0	.0000	0	Ш				
	wear		0.000	0.0000	0	.0000	-			z	0.00	00
002	ofset		0.000	0.0000	0	.0000	0					
	wear		0.000	0.0000	0	.0000	•			REL	ATIVE	
663	ofset		0.000	0.0000	0	.0000	ß				051 07	
	wear		0.000	0.0000	0	.0000				U	301.87	55
884	ofset		0.000	0.0000	0	.0000	A					
004	wear		0.000	0.0000	0	.0000	0			W	0.00	00
995	ofset		0.000	0.0000	0	.0000	0			MAC		
660	wear		0.000	0.0000	0	.0000	0			HAG	TINE	
000	ofset		0.000	0.0000	0	.0000	0	1		X	351.87	65
990	wear		0.000	0.0000	0	.0000	U					
007	ofset		0.000	0.0000	0	.0000	•	1		Z	0.00	00
007 + IN			0.000	0.0000	0	.0000	U		L			
+ 1N	r01		0.000	0.0000	0	.0000	^			+	0000	
			0.000	0.0000	0	.0000	Ø			1	6666	
				-	-						🛍 11:34	:29
	OK						1					
	UN		ANGLL									
				Fi	g.7-4							
				TUDUT	•							
				+ INPUT								
um	erica	al va	alue ir	'		the	- inn	ut	r	ามก	nerical	v
ann		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				,	2 mp	a	1	un	nonoai	v

software key or key to complete inputting;

(5) Calculating the offset value: The offset value or the wearing value = the original offset value or the wearing value + the input numerical value.

7.1.4 C Input Mode

(4) Input one

(1) On the setting page set, press **SETTING** software key to enter the tool offset administration page;

(3) Press **C** INPUT software key to enter C input page, which is shown as Fig.7-5:

Chapter 7 Tool Offset & Tool Setting

MI	DIF	RESET					INFO(1/1): IN	IFO ·	4205		
SETT	ING ->	T00L 0	FFSET							ABS	OLUTE	
No.	type		Х		Z	R		T	٦Ħ	x	351.8	765
991	ofset		40.00	000	0.0000	0	.0000	a		^	001.0	
001	⊌ear		0.00	000	0.0000	0	.0000			7	0.0	000
662	ofset		0.00	000	0.000	0	.0000			12	0.0	000
002	wear		0.00	000	0.0000	0	.0000			REI		
	ofset		0.00	000	0.0000	0	.0000					
663	wear		0.00	000	0.0000	0	.0000	U		U	351.8	/65
004	ofset		0.00	000	0.0000	0	.0000					
004	wear		0.00	000	0.0000	0	.0000	U		ω	0.0	000
0.05	ofset		0.00	000	0.000	0	.0000					
992	wear		0.00	000	0.0000	0	.0000	0		MAU	HINE	
	ofset		0.00	000	0.0000	0	.0000			X	351.8	765
005	⊌ear		0.00	000	0.0000	0	.0000	0				
007	ofset		0.00	000	0.0000	0	.0000			Z	0.0	000
007 C IN	DIIT		0.00	000	0.000	0	.0000					
	101		0.00	000	0.0000	0	.0000			÷	0000	
1			0.00	000	0.0000	0	.0000	0			0000	
											毗 11:3	4:54
	OK	C/	NCEL									
		1			Fiç	g.7-5						

(5) Input the coordinate axis name in the positioning measuring;

(6) Then, calculate the offset value:

Press C input button to input the axis number.

If the cursor is on the tool offset bar, the tool wearing remains unchanged, the rewritten tool offset value = the relative coordinate value – the tool wearing value;

INPU

ΟK

press

If the cursor is on the tool wearing bar, the tool offset value remains unchanged, the rewritten tool wearing value = the relative coordinate value – the tool offset value.

7.1.5 Clearing the Tool Offset Value or the Wearing Value

On the tool offset administration page, press the page up key or the page down key to select the page, press the up/down direction keys h, h to select the tool offset number to be rewritten and press the left/right direction keys h, h to select the tool offset data, the wearing data or the tool number to be cleared; press

current selected tool offset value or the wearing value corresponding to the axis or to clear the assumed tool nose direction number.

software key for

<u>惫г°州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual 【Programming & Operation】

7.2 Tool Setting in the Fixed Position

The tool setting in the fixed position is to set the tool offset data with C input mode. The operation steps are as below:

Fig.7-6

Fig.7-7

(1) Firstly, confirm whether the tool compensation value is zero or not in X and Z directions; if it is not zero, all cutter compensation values of all tool numbers must be cleared.

(2) The offset number of the tool is 00 (such as T0100, T0300);

(3) Select any tool (normally, the 1st tool during machining is taken as the reference tool)

(4) The tool nose of the reference tool is positioned in some point (tool setting point), which is shown as Fig.7-6:

(5) In MDI mode, on the program status page, the workpiece coordinate system is set by G50 X_ Z_ command;

(6) The coordinate values of the relative coordinate (U, W) are cleared;

(7) After the tool is moved into the safe position, and the other tool is selected and moved into the tool setting position, which is shown as Fig.7-7:

(10) Other tools can also be set by repeatedly executing the steps $7 \sim 9$.

Chapter 7 Tool Offset & Tool Setting

7.3 Trial Tool Cutting (The Machine Zero Return Tool Setting)

The tool setting method doesn't exist the reference tool, when one tool is worn or should be adjusted, the tool is just reset. The machine zero should be returned before tool setting; after power off, the machining can be continued just after power on, again, and the operation is simple and convenient.

The trial tool setting is to set the tool offset value with the measuring input method after the coordinate system is set.

The operation steps are as below: (the workpiece coordinate system is set on the workpiece end face):

Fig.7-8

(1) Confirm that each axis of the machine tool has already returned the machine zero.

(2) Select any tool and set the tool offset number as 00 (like T0100, T0300)

(3) The tool is moved along face A;

(4) When Z axis is not moved, the tool is retracted along X axis, and the spindle is stopped revolving;

- (7) The tool is moved along face B;
- (8) When X axis is not moved, the tool is retracted along Z axis and the spindle is stopped

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

(9) Measure the diameter "α" (Assume α=15.0);
(10) Press Software key to enter the measuring input page, and input X15.0 on
the input page OK software key is pressed, the tool offset

value or the wearing value of X axis is set into the corresponding offset number;

(11) Move the tool into the safe tool change position, and change the tool;

Fig.7-9

(12) The tool is cut along surface A1, which is shown as Fig. 7-9;

(13) When Z axis is not moved, the tool is retracted along X axis and the spindle is stopped revolving; Measure the distance " β '" between surface A1 and the origin of the workpiece coordinate system (assume $\beta' = 1.0$);

the wearing value of Z axis is set into the corresponding offset number;

Chapter 7 Tool Offset & Tool Setting

(16) The tool is cut along surface B1;

(17) When X axis is not moved, the tool is retracted along Z axis and the spindle is stopped revolving;

(18) Measure the distance " α '" (assume α '=14.5) ;

the input page , and software key is pressed, the tool offset value or the wearing value of X axis is set into the corresponding offset number;

(20) Other tools can also be set by repeatedly executing the steps $11 \sim 19$.

The measuring input method is to set the differential value between the tool reference position (such as, the tool nose position) and the tool nose position of the tool actual used during machining as the tool offset value. For example, when the coordinate value of face B is 50.0, the actual measured α =49.0, so the tool offset value in X direction of this tool offset is 1.0.

Note: After the tool setting with the machine zero, G50 can't be commanded for setting the workpiece coordinate system.

7.4 Position Record

When the parameter PRC (NO.5005#2) is set as 1, the position record button on the machine operation panel is valid.

The method of tool setting with position record:

1) The excircle or the end face of the workpiece is cut in Manual mode.

∲→-1

2) After pressing **TOOLOFFSET** button on the operation panel on the machine side, the workpiece coordinate values of X axis (three basic axes) and Z axis (three basic axes) are recorded into CNC.

3) And then, the tool is retracted, if it is in the excircle direction, the diameter should be measured.

After press MEASURE, input X+ measured value in the tool compensation number corresponding to the tool offset, and then press enter. On the end face, measure the length off the reference face,

(the reference face is assumed as Z=0), and press software key, input Z+ measured value in the tool compensation number corresponding to the tool offset, and then press enter.

Note 1: If TOOL OFFSET button is pressed for many times, CNC only records the coordinate position when

TOOL OFFSET button is pressed at the last time.

Note 2: During the tool setting in the fixed position, the position record is also used: After setting the

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

reference tool, press **TOOL OFFSET** button after the other tools reach the tool setting position, and the current coordinate position is recorded, and the tool offset is input based on the tool setting in the fixed position after tool retraction.

7.5 Automatic Tool Compensation

If the machine tool is installed with the automatic tool setting device, CNC can send the command for automatic measuring, and then CNC can automatically measure or determine the tool compensation amount. Firstly, the command for measuring is sent and the tool is moved into the measured position. CNC automatically measures the difference between the coordinate value of the measuring point and that of the commanded (the expected) measuring position and the difference is taken as the compensation amount of the tool. When the tool has been compensated, the tool is moved into the measured position after compensated. The difference between the coordinate value of the measured point and that of the commanded coordinate value is accumulated into the current set compensation amount.

Note: The parameter IGA (NO.6140#7) is set as 0 when the automatic tool compensation function is used.

Automatic measuring code: X axis: G36 Z axis: G37

The measuring position arrival signal

XAE(X0.6 1st path signal/X0.0 2nd path signal) ————corresponding to G36 ZAE(X0.7 1st path signal/X0.1 2nd path signal) ————corresponding to G37

Usage of G36 and G37 automatic tool offset codes

When G36 or G37 is in the commanded block, the tool is moved into the commanded measured position in the rapid traverse mode, which is shown as Fig.7-10. Moreover, the tool is decelerated and stopped in the position which is the distance γ from the measured position, and then moved into the measured position at the measured speed set by the parameters (No.6241 \sim 6243).

Moreover, close to the distance ε , only in the overtravel distance ε , when the measured position arrival signal corresponding to the program command becomes "1", and the above compensation amount is refreshed meanwhile, the movement command of the block ends. If the measured position arrival signal doesn't become "1" in the measured position overtravel distance ε , the control device enters the alarm status, and the movement command of the block ends without refreshing the compensation amount.

Chapter 7 Tool Offset & Tool Setting

Note 1: About the detailed usage of G36, G37, please refer to GSK988TA/988TA1/988TB Programming Manual.

- Note 2: About the usage of the automatic tool setting device, please refer to the user manual provided by the machine tool manufacturer;
- Note 3: Parameter 6241: The feedrate of X axis is set during automatic tool compensating; Parameter 6251: γ value of X axis is set in the automatic tool compensation function; Parameter 6254: ε value of X axis is set in the automatic tool compensation function; Parameter 6242: The feedrate of Z axis is set during automatic tool compensating; Parameter 6252: γ value of Z axis is set in the automatic tool compensation function; Parameter 6255: ε value of Z axis is set in the automatic tool compensation function;

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chapter 8 Graph Setting & Display

Chapter 8 Graph Setting & Display

8.1 Setting the Graph Parameters

Before setting the execution path, the relative information, like the path display or the graph simulation, is set.

Setting the graph information is mainly for the graph display, like the offset amount of each coordinate axis, the machining length, the diameter, the graph magnification and the graph simulation proportion. The detailed setting steps are as below:

GRAPH

(1) Press function key to enter the graph page set;

(2) On the graph page set, press software key to enter the graph parameter setting page, which is shown as Fig. 8-1:

	Ν	IDI RESET	Г				INFO(1/1):II	NFO 4205							
	GR	APH -> SETTI	NG						BSOLUT	IE					
		1	RACKVIE	J		EMULAT	FION	X		351.876	5				
		WORKPIECE OF	RIGIN	TOP LEFT	tool p	DST	FRONT	z		0.000	0				
		HRZ AXIS		Z	HRZ AX	IS	Z		FLATIV	/F					
		VET AXIS		x	VET AX	IS	X	U		351.876	5				
		SCALE		4	SCALE		4	W		0.000	0				
		Z AXIS SHIFT	(mm)	-53.7500	LENGTH	(mm)	100		ACHINE						
		X AXIS SHIFT	(mm)	-62.5000	DIAMETI	ER(mm)	100	x		351.876	5				
					Z AXIS	SHIFT(mm)	0.0000	z		0.000	0				
					X AXIS	SHIFT(mm)	0.000		- 00						
										200					
				1	1	1		1	1	h 11:36:3	33				
		GRAPHSET	VIEW	EMULATE											
					Fig	.8-1									
		~													
(3) Press	$\langle \neg$, L>	to s	witch be	etweer	ו two c	hannels	s;							
	\wedge	Л													
(4) Press	Ц	, V	key	to seled	ct the s	setting	item, lik	ke sel	lecti	ing th	e ł	orizo	ntal a	xis sh	own
as the above figur	e;														
(=) =	INPUT														
(5) Press		key to	make	e the se	lected	item to	o be inp	out;							
	\wedge	П													
(6) Press	ប	, V	key	to seled	ct the	setting	item, a	and th	nen	press	3	INPUT	key t	to cor	ıfirm
the rewriting is cor	mplete	ed.													
(7) Repeate	edlv o	perate t	o set	other p	arame	eters.									
Note: 1. In this page	e. the s	settina is	only	used the	e path (display	and dia	aram	sim	ulatio	n				
	.,		J		- 6			J							

- The path display and the graph simulation all are executed with the machine coordinate; if the path and the graph are not displayed, the coordinate axis offset should be rewritten.
- 3. The horizontal axis must be the basic Z axis or the axis parallel to Z axis.

<u>魚r[⊷]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

8.2 Path Graph Display and Operation

The tool path can be real-time checked with the graph path display.

GRAPH

(2) On the graph page set, press

(1) Press function key to enter the graph page set;

TRACK VIEW

software key to enter the path display page and

the program path currently executed is displayed, which is shown as Fig. 8-2:

In the figure, the current displayed coordinate plane and the path graph magnification are displayed below the path display screen. On the graph top, the current system running mode and status are displayed, on the screen right side, the current absolute coordinate value, the relative coordinate value and the modal command are displayed.

The path graph is operated as below:

upward/downward/leftward/rightward.

- Note 1: The name of each axis is set by the parameter #1020, and each axis is set as the different names with the letters, and then, on the path display page, the name of each coordinate plane and that of the path coordinate can be switched correspondingly.
 - 2. The system is only with the front and back tool posts without the left and right ones, so the horizontal axis can only be set as Z axis of the basic one.

Chapter 8 Graph Setting & Display

8.3 Simultaneous Graph Display and Operation

All cutting process of the part can be real-time checked with the graph simulation.

GRAPH

(1) Press function key to enter the graph page set;

EMULATE

(2) On the graph page set, press software key to enter the simulation graph display page, which is shown as Fig. 8-3:

On the graph top, the running mode and status of the current system is displayed, the screen right side is displayed the current absolute coordinate value, the relative coordinate value and the current tool number, etc.

In the figure, the simulation graph information on XZ coordinate plane is displayed, the coordinate plane on which the current simulation graph is and the magnification of the simulation graph is displayed at the bottom of the graph simulation display screen.

During the graph simulation process, the simulation graph is operated as below:

and the previous simulation graph is cleared;

RECOVER

(2) Press software key to restore the simulation graph into the original size and the position, and the previous simulation graph is cleared;

(3) Respectively press key to move the simulation graph

upward/downward/leftward/rightward.

Note: The name of each axis is set by the parameter #1020, and each axis is set as the different names with the letters, and then, on the path display page, the name of each coordinate plane and that of the path coordinate can be switched correspondingly.

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chater 9 Usage of USB Disk

Chapter 9 Usage of USB Flash Disk

9.1 Sending the Program

Firstly, a new file folder is created under the root content of the USB flash disc, and the file folder is renamed as NCPROG and the program to be sent is copied into the file folder, which is shown as Fig. 9-1:

and then urrent is pressed, O0002 program is copied into the local content.

The program of the local content is copied into the USB flash disc, and the user operates in the local content page based on the previous steps.

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

M	DIR	ESET			IN	<mark>IFO(1/1):I</mark>	NFO 4205		
PROG	RAM ->	USB DIRECTORY	(U:/NCPROG)						
prog	g acount	s: 9							
n	name	size(byte)	modified time		name	00001			
0	0001	0	2014-12-04,10:13:	58					
0	0023	248	2030-05-22,00:04:	16					
0	0070	0	2030-05-13,11:34:	54					
0	0071	164	2014-10-10,17:13:	48					
0	0086	565	2014-11-18,19:27:	36					
0	0110	277	2014-09-23,11:23:	28					
0	00111	141	2014-10-10,10:37:	50					
0	0144	69	2014-09-28,13:38:	48					
0	0145	90	2014-09-28,13:36:	24					
								🗓 🍜 11:56	:49
	LOCAL	USB	MDI CUR/NEX	T PRO	RAM ART	NEW	LOAD	OPEN	>
			Fi	a.9-2					

9.2 Data Backup

GSK988TA/988TA1/988TA system can backup the system file and the parameter into the USB flash disc for restoring later.

9.2.1 System File Backup

The data, like the system parameters, the tool offset, the screw pitch compensation, the tool lifetime and the macro variable, etc can backup with the USB flash disc, so the restoring can be operated to avoid the misoperation when the data error occurs. The operation steps are as below:

1. Insert the USB flash disc to confirm the system has already read the USB flash disc;

3. On the page, there are 5 sub-files under the system file, they are respectively: MACRO.MCO

0K

Chater 9 Usage of USB Disk

macro variable, PARAM.PAR parameter, TLIF.TLL tool lifetime, TOFF.CMP tool offset and WOFF.WMP screw pitch compensation. The user should move the cursor upward/downward on the

file to backup, and press key to select the file, and the cursor is on the file, and then, press

INPUT

key to select all files of the folder, which is shown as Fig. 9-3.

OUTPUT

4. After selecting the file, software key is pressed, "please select the output path"

is popped up, and **software key is pressed**, the file is copied. After copying the file is completed, please pull out the USB flash disc.

5. When the backup should be restored, the user should insert the USB flash disc, press

software key to switch the cursor into the USB flash disc directory, move the cursor to

find the file to restore the data and press key to select and then press to directly cover the file under the local content. After restoring the file, please power on the system, again; otherwise, some data may become invalid.

Note 1: For restoring the parameters, the parameter switch must be ON, and some parameters can't be restored because the authority level is too low.

2. Restoring the screw pitch compensation must be with the authority level 2.

9.2.2 Backup of Servo Parameter

9.2.2.1 Lead-out of Servo Parameter

1. Insert the U disk, and then confirm the system is already read it.

Operation

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

100	315				Similarico		
001		0~9999	密码(315:用户参	数 385:调	电机默认参数	ŧ)
	150	1~1000	电机型	型号代码			
002*	0	0~1	电机多	类型(0:同步	机 1:异步	机)	
003	0	0~35	上电礼	切始化显示内	內容		
004	21	9~25	控制相	莫式			
005	0	0~2					
006	2	0~2					
007	2	0~2					
008	0	0~1					
009	0	0~10					
010	0	0~30000					
011	2	0~11					
012	0	0~1					
<u></u>							₫ 11:07:4
∧ Axis X	Axis Z	NO.SRH	SAVE	RELOAD	BACKUP	RECOVER	EXPORT Param
			Fig	.9-4			

EXPORT PARAM the refer to the Fig.9-5; the leading-out file name changes into X, because the previous

0K

selected one is X axis; the parameter file of X axis can be backup to the U disk by

MDI	RESET		INF0(1/2):INF0 4205									
SYSTEM -:	> GSKL i	nk -> SE	RVO	-> SERV	O PA	RAMETE	R -Axi	s X				
No.		data		comments							ľ	
000		315		~9999		密码(315:用	户参数	385:调	电机默认参	数)	
001		150		~1000		电机型	号代码	9				
002*		0		0~1		电机类型(0:同步机 1:异步机)						
003		0		0~35		上电初始化显示内容						
004		21		9~25		控制模式						
005		0		0~2								
006		2		0~2								
007		2		0~2								
008		0		0~1000								
009		0		0~10								
EXPORT P	ARAM			30000								
Local	1		.sp	r 1								
Export	1		.sp	r I								
											冊 🏍 12・4	6.20
0	ĸ	CANCEL										
						_ :	~ F					

Fig.9-5

4. Select the other axes, and then repeat the above operations, subsequently, the parameter of other axes can be backup to the U disk.

5. The folder "SERVOPARAM" can be set up in the U disk after the operations are performed by the step 3, the parameter file with backup before will reserved at this folder. Refer to the Fig 9-6.

Chater 9 Usage of USB Disk

Fig.9-6

9.2.2.2 Leading-in of Servo Parameter

1. Ensure that the folder "SERVOPARAM" is already set up in the U disk, and the servo by backup holds at this folder. Refer to the above figure 9-6.

- 2. Insert a U disk, confirm that the system is already read to the U disk.
- 3. On the servo parameter administration page, select the desired parameter axis, for example, X

axis, press softkey, and then relation in the shown dialog,

the parameter in the U disk can be led to the system by

4. Repeat the above-mentioned operations, the parameter file of other axes can be led to the system accordingly.

0K

- Note 1: The machine tool can only be used after the power is turned on again if the servo parameters of the overall axes are led in.
- Note 2: The leading-in and leading-out of the servo parameter files should be operated in the MDI mode and the 3 levels of the operation authorities.

<u>惫г⁻州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Chater 10 Machining Example

Chapter 10 Machine Example

10.1 Excircle End Face Machining

1) The workpiece is machined as Fig. 10-1, and the bar stock dimension is Φ 50mm×100mm.

Fig.10-1

2) Two tool are machined, and the details are as below:

Tool number	Tool shape	Remark		
#1 tool		Excircle tool		
#2 tool		Cut-off tool, the tool width is 3mm.		

3) Editing the program

Based on the explanation of the codes of the mechanical machining process and the manual, the workpiece coordinate system is set shown as Fig.10-1, the program is edit as below:

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

O0001;		Part program name
N00000	G0 X150 Z150;	Position to the safe position for
		tool change
N00010	M12;	Clamp the chuck
N00020	M3 S800;	800 Switch on the spindle and
		the speed is 800
N00030	M8;	Switch on the coolant
N00040	T0101;	Change the 1 st tool
N00050	G0 X51 Z2;	Close to the workpiece
N00060	G01 X49 F150;	The excircle is machined twice,
		and feed 1mm at the 1 st time
N00070	G01 Z-69 F150;	MachineФ49 excircle
N00080	G0 X51;	Tool retraction
N00090	Z2;	Retract to the starting position
N00100	X0;	X axis feeding
N00110	G01 Z0 F100;	Z axis feeding
N00120	X45;	Turning end face
N00130	X48 W-1.5;	Machine chamfering angle
		1.5*45
N00140	Z-69;	TurningФ48 excircle
N00150	X51;	Retraction in X direction
N00160	G0 X150 Z150;	Return to the tool change point
		after the excircle machining is
		completed
N00170	T0202;	Change to #2 tool and execute
		#2 tool offset
N00180	G0 Z-68 X50;	Close to the workpiece
N00190	G01 X43 F100;	Grooving
N00200	G01 X49 F300;	Return
N00210	G01 W1.5;	
N00220	G01 X48;	
N00230	G01 X45 W-1.5;	Chamfering
N00240	G01 X0 F80;	Cut off
N00250	G0 X50;	Retraction
N00260	G0 X150 Z150;	Return to the safe position

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chater 10 Machining Example

N00270	Т0100;	Change to #1 tool
N00280	M5;	Switch off the spindle
N00290	M9;	Switch off the coolant
N00300	M13;	Release the chuck
N00310	M30;	Program end

4) Tool setting and running

(1) Move the tool into the safe position, execute T0100 in MDI mode and on the program status page, change the tool and cancel the tool offset;

(2) Move the tool and the tool is cut along the workpiece end face, which is shown as Fig.10-2;

(3) When Z axis remains still, the tool is released along X axis, the spindle is stopped revolving, and the system switches into the tool offset page, and the cursor is moved toward #001

MEASURE offset, the software key is pressed to enter the measuring input page, Z0 is input on MEASURE ΟK the input page and software key is pressed, the tool offset value of Z axis is input.

(4) The tool is moved and the tool is cut along the workpiece excircle, which is shown as Fig. 10-3;

<u>惫г[⊷]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

(5) When X axis remains still, the tool is released along Z axis, the spindle is stopped revolving, the workpiece excircle dimension is measured (the measured value is 49.5mm); the system switches

to the tool offset page and moves the cursor to #001 offset, and MEASURE software key is pressed, X axis tool offset is input.

(6) Move the tool into the safe position, and execute the 2nd tool by pressing the tool change key in Manual mode;

(7) Start the spindle and move the tool into the tool setting position, which is shown as Fig. 10-4, like point A:

(8) The system switches into the tool offset page, and the cursor is moved toward #002 offset, the

software key MEASURE is pressed to enter the measuring input page, X49.5 is input on the input page , and OK software key is pressed, Z0 is input with the same method;

Chater 10 Machining Example

(9) After the tool setting is completed, the tool is moved into the safe position;

- (10) In Auto mode, press MCLE START for automatic machining;
- (11) Measure the workpiece dimension, if it is different with the actual part dimension, the tool wearing value can be rewritten until the part dimension is within the tolerance limit.

10.2 Combined Machining

1) The workpiece is machined as Fig. 10-5 and the bar stock dimension is Φ 136×190mm.

2) The tools of four types are machined, and the details are as below:

Tool number	Tool type	Remark		
#1 tool	L.	Excircle roughing tool		
#2 tool		Excircle finishing tool		

Tool number	Tool type	Remark
#3 tool		Groove tool, the tool width is 3mm.
#4 tool		Thread turning tool, the tool nose angle is 60°.

3) Editing the program

Based on the explanation of the codes of the mechanical machining process and the manual, the workpiece coordinate system is set shown as Fig. 10-1, the program is edit as below:

O O O O 1;		Part program name
N 0 0 0 0	G0 X150 Z50;	Position to the safe position for
		tool changing
N 0 0 0 5	M12;	Clamp the chuck
N 0 0 1 0	M3 S800;	Switch on the spindle, the speed
		is 800
N 0 0 2 0	M8;	Switch on the coolant
N 0 0 3 0	T0101;	Change the 1 st tool
N 0 0 4 0	G0 X136 Z2;	Close to the workpiece
N 0 0 5 0	G71 U0.5 R0.5 F200;	Cutting depth is 1mm and the tool
		retraction for 1mm
N 0 0 5 5	G71 P0060 Q0150 U0.25 W0.5;	X axis is reserved 0.5mm surplus,
		Z axis is reserved 0.5mm surplus
N 0 0 6 0	G0 X16;	Close to the workpiece end face
N 0 0 7 0	G1 Z-23;	TurningФ16 excircle
N 0 0 8 0	X39.98;	Turning the end face
N 0 0 9 0	W-33;	TurningΦ39.98 excircle
N 0 1 0 0	X40;	Turning the end face
N 0 1 0 5	W-30;	TurningΦ40 excircle
N 0 1 1 0	G3 X80 W-20 R20;	Turning the convex arc
N 0 1 2 0	G2 X120 W-20 R20;	Turning the concave arc
N 0 1 3 0	G1 W-20;	TurningФ120 excircle
N 0 1 4 0	G1 X130 W-5;	Turning taper

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Chater 10 Machining Example

N 0 1 5 0	G1 W-25;	TurningФ130 excircle
N 0 1 6 0	G0 X150 Z185;	Roughing is completed and the
		tool change position is returned
N 0 1 7 0	T0202;	Change #2 tool and execute #2
		tool offset
N 0 1 8 0	G70 P0060 Q0150;	Turning cycle
N 0 1 9 0	G0 X150 Z185;	Roughing is completed and the
		tool change position is returned
N 0 2 0 0	T0303;	Change #2 tool and execute #2
		tool offset
N 0 2 1 0	G0 Z-56 X42;	Close to the workpiece
N 0 2 2 0	G1 X30 F100;	CutΦ30 groove
N 0 2 3 0	G1 X37 F300;	Return
N 0 2 4 0	G1 X40 W1.5;	Chamfering
N 0 2 5 0	G0 X42 W30;	Leave the grooving tool width
N 0 2 6 0	G1 X40 ;	
N 0 2 6 2	G1 X37 W1.5;	Chamfering
N 0 2 6 4	G1 X10;	CutΦ10 groove
N 0 2 6 6	G0 X17 Z-1;	
N 0 2 6 8	G1 X16;	
N 0 2 7 0	G1 X14 Z0 F200;	Chamfering
N 0 2 8 0	G0 X150 Z50;	Return to the tool change point
N 0 2 9 0	T0404 S100;	Change #4 tool and set the
		spindle speed 200
N 0 3 0 0	G0 X42 Z-54;	Close to the workpiece
N 0 3 1 0	G92 X39 W-34 F3;	Cut the thread cycle
N 0 3 2 0	X38;	Feeding for 1mm and cut for the
		2 nd time
N 0 3 3 0	X36.4;	Feeding for 0.6mm and cut for the
		3 rd time
N 0 3 3 2	X36;	Feeding for 0.4mm and cut for the
		4 th time
N 0 3 4 0	G0 X150 Z50;	Return to the tool change point
N 0 3 5 0	T0100;	Change into #1 tool
N 0 3 6 0	M5;	Switch off the spindle

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System	User Manual [Programming & Operation]

N 0 3 7 0	M9;	Switch off the coolant
N 0 3 8 0	M13;	Release the chuck
N 0 3 9 0	M30;	Program end

4) Tool setting and running

(1) Move the tool into the safe position, execute T0100 in MDI mode and on the program status page, change the tool and cancel the tool offset;

(2) Move the tool and the tool is cut along the workpiece end face, which is shown as Fig. 10-6;

(3) When Z axis remains still, the tool is released along X axis, the spindle is stopped revolving, and the system switches into the tool offset page, and the cursor is moved toward #001 offset, the

software key MEASURE is pressed to enter the measuring input page, Z0 is input on the input page DK software key is pressed, the tool offset value of Z axis is

input.

(4) The tool is moved and the tool is cut along the workpiece excircle, which is shown as Fig. 10-7:

(5) When X axis remains still, the tool is released along Z axis, the spindle is stopped revolving,

Chater 10 Machining Example

the workpiece excircle dimension is measured (the measured value is 135mm); the system switches

to the tool offset page and moves the cursor toward #001 offset, and	MEASURE	software key is
	ŀ	IEASURE
pressed to enter the measuring input page, and X135 is input on the in	put page	

and then ______ is pressed, X axis tool offset is input.

(6) Move the tool into the safe position, and execute the 2nd tool by pressing the tool change key in Manual mode;

(7) Start the spindle and move the tool into the tool setting position, which is shown as Fig. 10-8, point A:

(8) The system switches into the tool offset page, and the cursor is moved toward #002 offset,

the software key	MEASURE	is pres	ssed	to enter the	e measuring	input page, X	X135 is input
	MEASURE						
				ΟΚ			
on the input page		, a	and		software k	ey is pressed	d, Z0 is input

with the same method;

Г

- (9) Move the tool into the safe position, and execute the 3rd tool by pressing the tool change key in Manual mode;
- (10) Start the spindle and move the tool into the tool setting position, which is shown as Fig.10-9, like point A:

- (11) Switch the tool to the tool offset page and move the cursor into #003 offset, input X135 and Z0, and the input operation is same as the 8th step;
- (12) Move the tool into the safe position, and execute the 4th tool by pressing the tool change key in Manual mode;
- (13)Move the tool into the tool setting position, which is shown as Fig. 10-10, point A:

- (14) Switch the tool to the tool offset page and move the cursor into #004 offset, input X135 and Z0, and the input operation is same as the 8th step;
- (15)After the tool setting is completed, the tool is moved into the safe position;
- (16) In Auto mode, press CICLE START for automatic machining;
- (17) Measure the workpiece dimension, if it is different with the actual part dimension, the tool wearing value can be rewritten until the part dimension is within the tolerance limit.

Chater 10 Machining Example

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

<u>@</u>┌─州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

APPENDIX

amai

chine tools

Appendix 1 Parameters

This chapter mainly introduces CNC state and Value parameters through setting different parameters to realize the different requirements of function. The parameter Value mainly includes the following six types:

For the word axis parameter (3) and (4), the exact Value range is determined by specified parameters.

Each parameter should include the following information:

[Modification authority] : System authority (1st level), Machine authority (2nd level), Equipment management authority (3rd level), Operation authority (4th level), Limited authority (5th level)

[Parameter Type] : Bit, bit axis, word, word axis, Bit axis type, Bit spindle type, Word spindle type

[Validate method]: Become valid immediately or after power-on

[Value Range] : In interval, by enumerating or special judgement)

[Default Setting]: 8 digits in binary system, or 32-digit integral value

Note 1: The [Data Range] of bit type parameters is 0 or 1.
Note 2: When [Validate method] is not stated, the parameter will become valid immediately.
Note 3: When [Parameter Type] is not stated, the parameter is of bit type or word type.

Appendix 1.1 Parameter for "Setting"

#5 SEQ whether insert the sequence number automatically

- 0: No
- 1: Yes

Note: In EDIT or MDI mode, sequence number can be inserted automatically. The incremental value of sequence number is set in parameter of NO.3216.

Appendix 1.2 Parameters of the Interfaces of Input and Output

1: covered file, is not displayed

፟∰г፦州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

			#7	#6	#5	#4	#3	#2	#1	#0
0	930							MODBUS	NDSVR	RMEN
ĨN	[Modification authority]: Machine									
Ĩ٧	『Validate method』 : After power-on									
『D	efault S	etting]: 00	0000 0000						
#0	#0 RMEN Whether use the remote monitoring function									
	0: YE	S								
	1: NO									
#1	NDSVI	r w	hether o	pen the E	Ethernet	data con	nmunicat	ion service		
	0: Clo	se								
	1: Ope	en								
#2	MODB	US	Whether	open Mo	odbus co	ommunic	ation			

- 0: Close
- 1: Open

Appendix 1.3 Parameters of Axis Control/Setting Unit

		#7	#6	#5	#4	#3	#2	#1	#0	
1001									INM	
『Modification authority』: Machine										
اً Validate ا	nethc	od 』: Afte	r power-o	n						
『Default S	etting]] : 0000	0000							
#0 INM	The l	east mov	vement in	crement	t of linea	r axis is ir	า:			
0: Metr	ic sys	stem (met	tric machi	ne)						
1: Inch	syste	em (inch r	nachine)							
		#7	#6	#5	#4	#3	#2	#1	#0	
1002						AZR		DLZ		
[Modificat	ion au	uthority	: Machine	9						

[Default Setting]: 0000 0000

#1 DLZ Whether reference setting without dog is valid:

- 0: Invalid
- 1: Valid (for all axes)

Note: When DLZ is 0, parameter 1005#1 (DLZx) can set valid/invalid for each axis.

#3 AZR G28 command when the reference point is not set:

- 0: Reference point return with deceleration dog
- 1: alarm occurs

	#7	#6	#5	#4	#3	#2	#1	#0
1004		RPR					ISC	

[Modification authority] : Machine

[Validate method]: After power-on

『Default Setting』: 0000 0000

#1 ISC Set the least input increment and least command increment

0: 0.001mm, 0.001deg or 0.0001inch (IS-B)

1: 0.0001mm, 0.0001deg or 0.00001inch (IS-C)

#6 RPR Set the least command increment of the rotation axis and the multiplication of ISC parameter

#7 IPC Set the least command increment of the rotation axis and the multiplication of ISC parameter

- 00: ×1 times
- 01: ×10 times
- 10: ×100 times

	#7	#6	#5	#4	#3	#2	#1	#0
1005					HJZx		DLZx	ZRNx

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Parameter Type] : Bit axis

[Default Setting]: 0000 1000

#0 ZRNx Whether the system alarms if the other traverse commands are specified except G28 before setting the reference point in auto running (AUTO, DNC or MDI).

0: Alarm

1: Not alarm

#1 DLZx Whether setting the reference point free of the link stopper is valid.

0: Invalid

1: Valid

Note: Parameter DLZ (No.1002#1) is valid when it is "0". When DLZ (No.1002#1) is "1", there is no connection with the parameter, and setting the reference point free of the link stopper is valid for all axes.

#3 HJZx After the reference point is set, manually return to the reference point.

- 0: Use the deceleration link stopper to return to the reference point
- 1: No connection with the deceleration link stopper, rapidly position in the reference point.

	#7	#6	#5	#4	#3	#2	#1	#0
1006			ZMIx		DIAx		ROSx	ROTx

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Validate method]: After power-on

[Parameter Type] : Bit axis

[Default Setting]: 0000 0000

#0, #1 ROTx, ROSx set linear axis or rotary axis

ROSx	ROTx	Content
		Linear axis
0	0 0	Metric/inch conversion
0	0	All coordinate values are of the linear axis type.
		The stored pitch error compensation is of the linear axis type.
		Rotary axis (type A)
		No metric/inch conversion
		Machine tool coordinate value circularly displays based upon the value of the parameter
0	1	1260. The relative coordinate value is relevant to the parameters 1008#2, 1008#0, and
0	I	the absolute coordinate is related with the 1008#0
		The stored pitch error compensation is the rotary axis type.
		Automatically return to the reference point at the direction of the reference
		point return (G28 and G30), the traverse amount can not exceed one-turn.
1	0	Invalid setting
		Rotary axis (type B)
		No metric/inch conversion
1	1	Machine tool coordinate value, relative coordinate value (it is relevant to the parameter
	I	1008#2) and absolute value are linear axes (It can not be circularly display by parameter
		1260)
		The stored pitch error compensation is of the linear axis type.

#3 DIAx sets the traverse amount of each axis

- 0: specified by the radius
- 1: specified by the diameter

#5 ZMIx sets the direction of each axis reference point return

- 0: positive direction
- 1: negative direction

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

	#7	#6	#5	#4	#3	#2	#1	#0
1007	RZDx							

[Modification authority] :Machine

[Value Range]: Bit axis

[Default Setting]: 0000 0000

#7 RZDx Rotation axis (type A) is in the state of reference point establishment, whether it is

the approximate selection direction when reference point returns.

- 0: Disabled
- 1: Enabled

	#7	#6	#5	#4	#3	#2	#1	#0
1008						RRLx	RABx	ROAx

[Modification authority] : Machine

[Way of Validating] : After power-on

[Parameter Type] : Bit axis

[Default Setting]: 0000 0000

#0 ROAx sets whether the cycle display function of the rotary axis valid.

- 0: Invalid
- 1: Valid

Note: ROAx is just valid for the rotary axis and parameter ROTx (No.1006#0) must be 1.

#1 RABx sets the rotation direction of the axis during the absolute command.

0: Rotation direction close to the target

1: Direction specified by the command value coder

Note: RABx is valid only when parameter ROAx is 1.

#2 RRLx Relative coordinate

- 0: Not cycle as the movement amount of each turn
- 1: Cycle as the movement amount of each turn

Note 1: RRLx is valid only when ROAx is 1.

1010

Quantity of CNC controlled axes (CCA)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Validate method]: After power-on

[Value Range]: 0∼total number

Set the total number of axes which is directly controlled by CNC, the other can be controlled by PLC.

Note: The overall controllable axes numbers are determined by parameter No.8130, and its setting value

黛г⋍州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

of this parameter can not be more than the one of the No.8130.

	#7	#6	#5	#4	#3	#2	#1	#0
1015	DWT	WIC						

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#6 WIC The offset measured value of the work piece origin is directly input

- 0: Only valid for the selected work piece coordinate system
- 1: Valid for all coordinate systems

#7 DWT When the pause time is specified by P, the Value units are

- 0: IS-B is 1ms, IS-C is 0.1ms.
- 1: 1 ms

1020

Programming name of each axis (CAN)

[Modification authority]: Machine

[Parameter Type]: Word axis

[Value Range]: 88 (X), 89 (Y), 90 (Z), 65 (A), 66 (B), 67 (C), 85 (U), 86 (V), 87 (W)

Set the axial name of each controlled axis.

Note: The same axes names can not be set; U, V and W axes are only enabled in the G code of B set.

1022

The property of each axis in the basic coordinate system

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Validate method]: After power-on

[Parameter Type]: Word axis

 $\llbracket Value Range \rrbracket : 0{\sim}7$

To ensure the planes of the arc interpolation, the tool offset and the tool nose radius, etc.

- G17: X Y plane G18: Z - X plane
- G19: Y-Z plane

There are four controllable axes: 1 - X basis axis and parallel axis; 2 - Y basis axis and parallel axis; 3 - Z basis axis and parallel axis; 4 - R otation axis. Only one axis of the basic three axes can be set: X, Y and Z; the parallel axes can be set as two more axes (which is paralleled with the basic axis).

Setting value	Meaning

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

0	They are neither basic three axes nor the parallel axes,
1	X axis of the basic three axes
2	Y axis of the basic three axes
3	Z axis of the basic three axes
5	Parallel axis of X axis
6	Parallel axis of Y axis
7	Parallel axis of Z axis

Servo axis number of each axis (NSA)

[Modification authority] : Machine

 $\llbracket \mbox{Validate method} \ \blackbox{\tt I}$: After power-on

 $\llbracket \texttt{Parameter Type} \rrbracket$: Word axis

 $\llbracket Value Range \rrbracket: 0{\sim}99$

Set the logic ID number (0 \sim 99;0 means that there is no slave station) of the feed servo slave station, its setting value should be corresponding with the one of the servo driver.

Appendix 1.4 Parameter of the Coordinate System

	#7	#6	#5	#4	#3	#2	#1	#0
201	WZR		EWZ	RWO	ZCR	ZCL		

[Modification authority] : Equipment management authority

[Default Setting]: 0000 0000

#2 ZCL After manually return to reference point, the part coordinate system

0: Not cancel

1: Cancel

- #3 ZCR After the manual reference point return is completed, the workpiece coordinate system offset value set by G50:
 - 0: Not cancel

1: Cancel

#4 RWO The workpiece coordinate system offset value set by G50 when the coordinate

memories after the power is turned on.

0: Clear

1: Restore the memory value from the previous power-off

#5 EWZ The workpiece coordinate system when the power-on coordinate memories.

<u>@</u>Г[⊷]州数控

- 0: Do not return to G54
- 1: Return to G54

#7 WZR Work piece coordinate system during resetting

- 0: Not return to G54
- 1: Return to G54

	#7	#6	#5	#4	#3	#2	#1	#0
1202					RLC	G50	EWS	EWD

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#0 EWD The movement direction of the coordinate system caused by the external work piece origin offset amount

0: It is same as the direction specified by the external work piece origin offset amount.

1: It is opposite to the direction specified by the external work piece origin offset amount.

#1 EWS The work piece coordinate system movement amount and the external work piece

zero point offset amount

0: Saved in each memorizer

1: Saved in one memorizer (the work piece coordinate system movement amount is same as

the external work piece zero point offset amount

#2 G50 When G50 is commanded and the coordinate system is set,

- 0: Not alarm, but execute G50
- 1: P/S alarms (No.010), not execute G50

#3 RLC After resetting, the part coordinate system

0: Not cancel

1: Cancel

	_	#7	#6	#5	#4	#3	#2	#1	#0	
1205									MCE	

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#0 MCE Whether the coordinate system is memorized with power-on when adapting with the incremental encoder.

- 0: Do not memory
- 1: Memory

1206

The allowable value of the machine coordinate system with the absolute encoder after power on (MER)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

[Modification authority] : Equipment management

[Value Range]: 0∼9999

『Parameter Type』: Word axis

[Default Setting]: 1000

It is for detecting the offset when the machine coordinate system is set at power on; if it is out of the range, the alarm occurs. The offset isn't detected when it is 0.

1220	The origin offset amount of each axis external work piece coordinate
	system (EWO)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

 $\llbracket \text{Value Range}
rbracket$: -9999 9999 \sim 9999 9999

This is one parameter to set the origin location of the work piece coordinate system (G54~G59). The parameter is the valid common offset amount for all work piece coordinate system.

Setting unit	IS-B	IS-C	Unit
Linear axis (input in metric system)	0.001	0.0001	mm
Linear axis (input in inch system)	0.0001	0.00001	inch
Rotary axis	0.001	0.0001	deg

1221	Origin offset amount of each axis in G54 workpiece coordinate system (WO1)
1222	Origin offset amount of each axis in G55 workpiece coordinate system (WO2)
1223	Origin offset amount of each axis in G56 workpiece coordinate system (WO3)
1224	Origin offset amount of each axis in G57 workpiece coordinate system (WO4)

爲广州数控

	GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manu	al [Programming & Operation]
--	---	------------------------------

1225	Origin offset amount of each axis in G58 workpiece coordinate system (WO5)
1226	Origin offset amount of each axis in G59 workpiece coordinate
1220	system (WO6)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

『Value Range』: -99 999 999~+99 999 999

This is one parameter to set the origin location of the work piece coordinate system (G54~G59). The parameter is the valid common offset amount for all the work piece coordinate system.

SETTING UNIT	IS-B	IS-C	UNIT
Linear axis (input in metric	0.001	0.0001	mm
system)			
Linear axis (input in inch	0.0001	0.00001	inch
system)	0.0001	0.00001	intern
Rotary axis	0.001	0.0001	deg

1240	Each axis machine coordinate value of the 1 st reference point
	(RF1)

Each axis machine coordinate value of the 2 nd reference point
(RF2)

1242	Each axis machine coordinate value of the 3 rd reference point
	(RF3)

1243		Each axis machine coordinate value of the 4 th reference point
		(RF4)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Way of Validating] : 1240 valid after power on; 1241 \sim 1243 valid immediately.

[Parameter Type]: Word axis

 $\llbracket \text{Value Range}
rbracket$: -99 999 999 \sim +99 999 999

1241

Set the coordinate values from the 1st to the 4th reference points in the mechanical coordinate system.

SETTING UNITS	IS-B	IS-C	UNITS
Machine in metric system	0.001	0.0001	mm
Machine in inch system	0.0001	0.00001	inch
Rotary axis	0.001	0.0001	deg

1260

Each turn movement amount of each axis in rotary axis (PRA)

[Modification authority] : Equipment management

[Validate method]: After power-on

[Parameter Type]: Word axis

 \llbracket Value Range \rrbracket : 1000 \sim 9 999 999

Set the movement amount of each turn in rotary axis.

Appendix 1.5 Parameter of the Stroke Detection

Setting unit of stroke parameter Nos.1320~1327 is shown in the following table:

Setting unit	IS-B	IS-C	Unit
Metric machine	0.001	0.0001	mm
Inch machine	0.0001	0.00001	inch
Rotary axis	0.001	0.0001	deg

	#7	#6	#5	#4	#3	#2	#1	#0
1300	BFA	LZR	RL3			LMS		OUT

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#0 OUT The restricted area of the stroke detection 2 in memory type is set by parameters (No.1322 or No.1323).

- 0: Internal area
- 1: External area

#2 LMS Whether the switching signal EXLM of the stroke detection in memory type is valid

```
0: Invalid
```

1: Valid

Note: Stroke detection 1 in memory type possesses the parameter of the restricted area set by two groups, signals are switched through the stroke limit in memory type and the set restricted area is selected.

- (1) Restricted area I: Parameter No.1320 or No.1321
- (2) Restricted area II: Parameter No.1326 or No.1327

#5 RL3 Whether it is valid that the stroke detection 3 releases signal RLS0T3

- 0: Invalid
- 1: Valid

#6 LZR After power on before manual reference point return whether detect the stroke 1 in the

memory type

- 0: Detect
- 1: Not detect

Note: There isn't any connection with the setting when the absolute position encoder is being using, the power is on and the reference point is set. After power on, the stroke is directly detected in memory type.

#7 BFA When the command of overrun memory is sent

- 0: Alarm after overrun
- 1: Alarm before overrun

	-	#7	#6	#5	#4	#3	#2	#1	#0
1301		PLC	OTS						

[Modification authority] : Equipment management

[Parameter Type] : Bit axis

[Default Setting]: 0000 0000

#6 OTS Whether output the signal in the overtravel alarm to PLC when the stored stroke detection alarm occurs.

- 0: Do not output
- 1: Output
- **#7 PLC** Whether check the stroke before moving
 - 0: No
 - 1: Yes

	#7	#6	#5	#4	#3	#2	#1	#0
1310							OT3x	OT2x

[Modification authority] : Equipment management

[Parameter Type] : Bit axis

[Default Setting]: 0000 0000

#0 OT2X Whether each axis detects the stroke 2 in memory type

- 0: Not detect
- 1: Detect

#1 OT3X Whether detect the stroke 3 in memory type in each axis

- 0: Not detect
- 1: Detect

[Modification authority] : Equipment management

[Parameter Type]: Word axis

[Default Setting]: No.1320 is 99 999 999, No.1321 is -99 999 999

[Value Range] :-99 999 999~99 999 999

Respectively set the coordinate values of boundaries in positive/negative directions in the mechanical coordinate system in stroke detection 1 along each axis in memory type. Set the outside of boundary as the restricted area to tools.

(NC1)

1. The axes specified by diameter are set by diameter value.

2. When (parameter No.1320) < (parameter No.1321) and the limit is infinite, it can not detect the stroke 1 in memory type. (The stroke limit switching signal in memory type is invalid.) If the absolute command is specified, the coordinate value may overflow; the normal movement can not be executed.

1322

Coordinate value in positive direction boundary of each axis stroke detection 2 in memory type (PC2)

黛г⋍州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

stroke detection 2 in memory type (NC2)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

[Default Setting]: 0

[Value Range] : −99 999 999~99 999 999

Respectively set the coordinate values of boundaries in positive and negative directions in the mechanical coordinate system in stroke detection 2 along each axis in memory type. The outside or inside of boundary is the restricted area, which is set by parameter OUT (No.1300#0).

Note: The axis specified by diameter must be set by the diameter value.

1325	Coordinate value in negative direction boundary of each axis
1525	stroke detection 3 in memory type(NC3)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

[Default Setting]:0

[Value Range] : -99 999 999~99 999 999

Respectively set the coordinate values of boundaries in positive and negative directions in the mechanical coordinate system in stroke detection 3 along each axis in memory type. Set inside

of the boundary as the restricted area to tools.

Note: The axis specified by the diameter must be set by the diameter value.

1327 Coordinate value II in negative direction boundary of each axi stroke detection 1 in memory type (PC12)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

[Default Setting]: 0

[Value Range] : -99 999 999~99 999 999

Respectively set the positive and negative boundary coordinate values in stroke detection 1 along each axis in memory type in the machine coordinate system. Set outside of the boundary as the restricted area. When parameter LMS (No.1300#2) is "1", and the stroke limit switching signal EXLM (G7.6) in memory type is "1", the restricted area is valid, but it is invalid if it is set by No.1320 and 1321.

1. The axes programmed by the diameter must be set by the diameter value.

2. The parameter is invalid when parameter LMS (No.1320#2) is "0", or the stroke limit switching signal EXLM (G7.6) in the memory type is "0". Then, the restricted area set by parameter No.1320 or No. 1321 is valid.

Appendix 1.6 Parameter of the Feedrate

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#2 JOV JOG override

- 0: Valid
- 1: Invalid (fixed as 100%)

	#7	#6	#5	#4	#3	#2	#1	#0
1403	RTV		HTG					MIF

[Modification authority] : Equipment management authority

[Default Setting]: 0000 0000

#0 MIF The minimum unit of F command (the cutting feedrate) of feeding/min

- 0: 1mm/min (input in metric system) or 0.01inch/min (input in inch system)
- 1: 0.001mm/min (input in metric system)or 0.00001inch/min (input in inch system)
- **#5** HTG The speed command of the spiral interpolation is:
 - 0: Specified by the linear speed of the arc
 - 1: Specified by the linear speed with the linear axis

#7 RTV During thread cutting cycle, the override of the tool run-out is

- 0: Valid
- 1: Invalid

	#7	#6	#5	#4	#3	#2	#1	#0
1404						F8A	DLF	

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#1 DLF After setting the reference point, manually return to the reference point

- 0: Move to the reference point (No.1420) at the rapid feedrate
- 1: Move to the reference point (No.1424) at the manual rapid feedrate

#2 F8A F command range feed/min

0: Set according to parameter MIF (No.1403#0)

- 1	
- 1	-

SETTING UNITS	UNIT	IS-B	IS-C
Input in metric system	mm/min	1~60000.999	1~24000.999
Input in inch system	inch/min	0.01~2400	0.01~960
Rotary axis	deg/min	1~60000	1~24000

1410

Dry run speed (DRR)

[Modification authority] : Equipment management

[Value Range]:

	VALUE	VALID	DEFAULT	
SETTING UNITS	UNITS	IS-B	IS-C	SETTING
Machine in metric system	1mm/min	6~15000	6~12000	1000
Machine in inch system	0.1inch/min	6~6000	6~4800	1000

Set the speed during dry run.

1411

Feedrate in auto mode after power on (IFV)

 $\llbracket {\sf Parameter} \; {\sf Type} \, \rrbracket \,$: Word type

 \llbracket Value Range rbracket : 6 \sim 12000

[Default Setting]: 100

SETTING UNITS		VALUE UNITS
Machina in motric system	G98	1 mm/min
Machine III metric system	G99	0.001 mm/rev
Machina in inch system	G98	0.1 inch/min
Machine in Inch system	G99	0.0001 inch/rev

It doesn't require changing the cutting speed in the machine during the processing. And the cutting feedrate can be set by the parameter, and then the cutting feedrate is not required to be set in the program. But the actual feedrate is limited by parameter NO.1422 which set the maximum cutting feedrate for all axes.

1420

Each axis rapid movement speed (RTT)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Parameter Type] : Word axis

[Value Range]:

	VALUE	VALID	DEFAULT		
SETTING UNITS	UNITS	IS-B	IS-C	SETTING	
Machine in metric	1mm/min	30~10000	6~60000	8000	
system		00 100000	0 00000	0000	

Machine in inch system	0.1inch/min	30~48000	6~24000
Rotary axis	1 deg/min	30~100000	6~60000

Set the rapid movement speed of each axis when the rapid movement override is 100%.

1421

F0 speed of each axis rapid override (F0R)

[Modification authority] : Equipment management authority

[Parameter Type] : Word axis

[Value Range]:

		VALID RANGE		DEFAULT
SETTING UNITS	VALUE UNITS	IS-B	IS-C	SETTING
Machine in metric system	1 mm/min	30~15000	30~12000	
Machine in inch system	0.1 inch/min	30~12000	30~6000	400
Rotary axis	1 deg/min	30~15000	30~12000	

Set the speed when the rapid movement override of each axis is F0.

1422

Maximum cutting feedrate of all axes (MFR)

[Modification authority] : Machine

[Value Range]:

		VALID F	DEFAULT	
SETTING UNITS	UNITS	IS-B IS-C		SETTING
Machine in metric	1mm/min	e∼100000	e∼.60000	
system	111111/11111	013100000	000000	8000
Machine in inch system	0.1inch/min	6~48000	6~24000	

Set the maximum cutting feedrate for all axes.

1423

JOG feedrate of each axis (JFR)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

[Value Range]:

	VALUE UNITS	VALID RANGE		DEFAULT
SETTING UNITS		IS-B	IS-C	SETTING
Machine in metric system	1mm/min	6~60	0000	1000

Machine in inch system	0.1inch/min
Rotary axis	1 deg/min

Set the feedrate of each axis during continually manual feeding (JOG feeding), the actual feedrate is limited by parameter NO.1422 (the maximum cutting feedrate of all axes).

1424

Manual rapid speed of each axis (MRR)

[Modification authority] : Equipment management authority

[Parameter Type] : Word axis

[Value Range]:

	VALUE	VALID RANGE		DEFAULT
SETTING UNITS	UNIT	IS-B	IS-C	SETTING
Metric machine	1 mm/min	30~100000	30~60000	
Inch machine	0.1 inch/min	30~48000	30~24000	8000
Rotary axis	1 deg/min	30~100000	30~60000	

Set the speed of each axis manual rapid movement when rapid movement override is 100%. Set the maximum speed of MPG feeding.

Note: If it is set as 0, use the setting value of parameter 1420.

1425

FL speed of each axis reference point return (FLR)

[Modification authority] : Equipment management

『Parameter Type』: Word axis

[Value Range]:

	VALUE	VALID RANGE		DEFAULT
SETTING UNITS	UNITS	IS-B	IS-C	SETTING
Machine in metric system	1 mm/min	6~15000	6~12000	200
Machine in inch system	0.1 inch/min	6~12000	6~6000	200
Rotary axis	1 deg/min	6~15000	6~12000	

After deceleration is performed, set the speed (FL speed) of each axis during the reference point return.

1428

Reference point return speed along each axis (RPF)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Parameter Type] : Word axis

[Value Range]:

SETTING UNITS	VALUE UNITS	VALID RANGE	DEFAULT SETTING	
Machine in metric system	1 mm/min	0 6 60000	5000	
Machine in inch system	0.1 inch/min	0, 8~80000		
Rotary axis	1 deg/min			

Set the situation of the reference point return used the deceleration block, alternatively, the rapid traverse rate based upon the reference point return regardless of the state of reference point. When the parameter value sets to 0, parameter №1421 is enabled.

The Max. feedrate of the Manual MPG along each axis (HMF)

[Modification authority] : Equipment management

[Parameter Type] : Word axis

[Value Range]:

SETTING UNITS	VALUE UNITS	VALID RANGE	DEFAULT SETTING	
Machine in metric system	1 mm/min	0 6 60000	5000	
Machine in inch system	0.1 inch/min	0, 0, 00000		
Rotary axis	1 deg/min			

Set the Max. feedrate of the manual MPG of each axis. When its setting is 0, the setting value of parameter №1424 is enabled.

1466

The retracting feedrate during the thread cutting (FRT)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Parameter Type] : Word axis

[Value Range]:

SETTING UNITS		VALID I		
Machine in metric	VALUE UNITS			
system		19-0	15-0	SETTING
Machine in inch	1 mm/min	e∼100000	e~.e0000	
system	1 11111/11111	0, ~ 100000	0,~00000	8000
SETTING UNITS	0.1 inch/min	6~48000	6~24000	

Set the feedrate of end-retraction operation of the thread cutting machining. When this

parameter sets to "0", that is, the speed of long axis is performed the end-retraction operation.

Appendix 1.7 Parameter of Control of Acceleration and Deceleration

	_	#7	#6	#5	#4	#3	#2	#1	#0
1601					RTO				
[Modificat	ion au	Ithority』	: Equipme	ent mana	gement				
『Default S	etting	』: 0000	0000						
#4 RTO	Duri	ng rapid	running, t	the block	is				
0: No	overla	apping							
1: Ove	erlapp	oing							
		#7	#6	#5	#4	#3	#2	#1	#0
1610				THLX	JGLx				
[Modificat	ion au	Ithority	: Equipme	ent mana	gement				
[Paramete	er Typ	e』:Wor	d axis						
	- 11 :	1 0000	0000						

[Default Setting]: 0000 0000

#4 JGLx The acceleration/deceleration for the manual feed

- 0: Exponential acceleration/deceleration
- 1: Linear acceleration/deceleration after interpolation

#5 THLX The acceleration/deceleration of the end-retraction operation in the thread cutting machining:

- 0: Exponential acceleration/deceleration
- 1: Linear acceleration/deceleration

1620

Time constant T of linear acceleration and deceleration of each axis rapid movement (TT1)

Modification authority : Equipment management

[Parameter Type]: Word axis

『Value Range』: 0∼4000 ms

[Default Setting]: 100

Set the time constant of acceleration and deceleration during rapid movement.

1622

Time constant of acceleration and deceleration during cutting and feeding after each axis interpolation (ATC)

[Modification authority] : Equipment management

 $\llbracket {\sf Parameter Type} \rrbracket : {\sf Word axis}$

『Value Range』 : 0∼4000 ms

[Default Setting]: 100

Set the acceleration and deceleration of each axis cutting and feeding in index type, or the time constant of acceleration and deceleration in linear type after interpolation.

And the detailed type is set by parameter CTLx (NO.1610#0). If CTLx sets the acceleration and deceleration in linear type after linear interpolation, the maximum time constant of acceleration and deceleration is limited in 512ms and even it exceeds 512ms, it is still dealt as 512ms.

Note: Except the special usage of the parameter, all axes must be set as the same time constant. If the different time constants are set, the correct linear or circular can't be shaped.

1624

Time constant of acceleration and deceleration of each axis JOG feeding after interpolation (JET)

[Modification authority] : Machine

[Parameter Type] : Word axis

『Value Range』: 0∼4000ms

[Default Setting]: 100

Set the acceleration and deceleration in index type of each axis JOG feeding, and the time constant of acceleration and deceleration in linear type after interpolation.

The detailed type is set by parameter JGLx (NO.1610#4). If JGLx sets the acceleration and deceleration in linear type after interpolation, the maximum time constant of acceleration and deceleration is limited in 512ms and even it exceeds 512ms, it is dealt as 512ms.

FL speed of acceleration and deceleration in index type during each axis JOG feeding (FLJ)

[Modification authority] : Equipment management authority

[Parameter Type] : Word axis

[Value Range]:

	VALUE	VALID	DEFAULT	
SETTING UNITS	UNITS	IS-B	IS-C	SETTING
Metric machine	1 mm/min	0, 6~15000	0, 6~12000	30
Inch machine	0.1 inch/min	0, 6~12000	0, 6~6000	30
Rotary axis	1 deg/min	0, 6~15000	0, 6~12000	30

Set the low limit speed (FL speed) of acceleration and deceleration in index type during each axis JOG feeding.

1626

Time constant of acceleration and deceleration during each axis thread cutting cycle (TET)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

 $\llbracket {\sf Parameter} \; {\sf Type}
rbracket \;$: Word axis

 $\llbracket Value Range \rrbracket: 0{\sim}4000 ms$

[Default Setting]: 100

Set the time constant of acceleration and deceleration in linear and index types during each axis thread cutting cycle.

1627

FL speed of acceleration and deceleration in index type during each axis thread cutting cycle (FLT)

[Modification authority] : Equipment management

 $\llbracket \texttt{Parameter Type}
rbracket$: Word axis

[Value Range] :

SETTING	VALUE	VALID	DEFAULT	
UNITS	UNITS	IS-B	IS-C	SETTING
Machine in metric system	1 mm/min	0, 6~15000	0, 6~12000	30
Machine in inch system	0.1 inch/min	0, 6~12000	0, 6~6000	30

Set low limit speed (FL speed) of acceleration and deceleration in index type during each axis thread cutting cycle.

1628

The acceleration/deceleration time constant of the end-retraction motion in the thread cutting cycle along each axis (TST)

[Modification authority] : Equipment management

0

[Parameter Type]: Word axis

[Value Range]: $0{\sim}4000$ ms

[Default Setting]:

Set the acceleration/deceleration time constant of end-retraction short axis when the thread cutting cycle of each axis is performed; when this parameter setting value is "0", use the No.1626

parameter value (0 \sim 4000ms).

amatic

chine tools

Appendix 1.8 Parameter of Servo and Backlash Compensation

	#7	#6	#5	#4	#3	#2	#1	#0
1800	BDEC	BD8						

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Default Setting]: 1000 0000

#6 BD8: Impulse output frequency of the backlash compensation

- 0: Compensate at the frequency set by parameter #1853
- 1: Compensate at 1/8 of frequency set by parameter #1853

#7 BDEC:Backlash compensation mode

- 0: Fixed pulse frequency output, which is set by parameters #1853 and #1800.6.
- 1: Pulse frequency output based on the acceleration and deceleration characteristics.

		#7	#6	#5	#4	#3	#2	#1	#0
1811							POD		
[Modificat	ion au	uthority]	: Machine	;					
『Validate r	netho	d]:Aftei	r power-o	n					
[Paramete	er Typ	e』∶Bit a	ixis						
『Default S	etting]:0000	0000						
#2 PO[) Se	lecting o	utput dire	ections of	f each axi	s pulse			
0: N	lot inv	versed							
1: li	nverse	ed							
		#7	#6	#5	#4	#3	#2	#1	#0
1815				APCx	APZx				
[Modificat	ion au	uthority]	Machine	;					
『Validate r	netho	d]:Aftei	r power-o	n					
[Paramete	er Typ	e』∶Bit a	ixis						

[Default Setting]: 0000 0000

#4 APZx The mechanical position and the absolute position detector position during using the absolute position detector

- 0: Not consistent
- 1: Consistent

Note: When use the absolute position detector, during the initial setting or after changing the absolute position encoder, the parameter must be set as 0, and connect power supply, again after power off and manually return to the reference point. Therefore, the mechanical position consists with that of the position encoder, and the parameter will be auto set as 1.

#5 APCx Position encoder

0: Not use the absolute position detector

1: Use the absolute position detector (the absolute pulse encoder)

Each axis detection multiply ratio (DMR)

[Modification authority] : Machine

『Parameter Type』 : Word axis

[Value Range]: 1~32767

[Default Setting]: 2

The detection multiply ratio (DMR) of each axis is set

Command multiply ratio of each axis (CMR)

 $\llbracket \mathsf{Modification} \ authority \rrbracket \ : \mathsf{Machine}$

[Parameter Type] : Word axis

『Value Range』: 1∼32767

[Default Setting]: 2

Gear ratio output by each axis=CMR/ DMR

Detection unit=minimum movement unit/ CMR

The relations between the setting units and the minimum movement units:

		IS-B		IS-C			
	Inp	Logat input incroment	Least command	Loget input increment	Least command		
	but	Least input increment	increment		increment		
Me	Me	0.001mm (Diameter)	0.0005mm	0.0001mm (Diameter)	0.00005mm		
etric i	tric	0.001mm (Radius)	0.001mm	0.0001mm (Radius)	0.0001mm		
macl	Ir	0.0001 inch (Diameter)	0.0005mm	0.00001 inch (Diameter)	0.00005mm		
hine	nch	0.0001 inch (Radius)	0.001mm	0.00001 inch (Radius)	0.0001mm		
In	Me	0.001mm (Diameter)	0.00005 inch	0.0001mm (Diameter)	0.000005 inch		
ch n	tric	0.001mm (Radius)	0.0001 inch	0.0001mm (Radius)	0.00001 inch		
าach	Ir	0.0001 inch (Diameter)	0.00005 inch	0.00001 inch (Diameter)	0.000005 inch		
ine	nch	0.0001 inch (Radius)	0.0001 inch	0.00001 inch (Radius)	0.00001 inch		
Rotary		0.001deg	0.001deg	0.0001deg	0.0001deg		

<u>@</u>┌─州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

a via		
axis		

1851

Backlash compensation value of each axis (BCV)

[Modification authority] : Machine

[Parameter Type]: Word axis

 \llbracket Value Range \rrbracket : -9999 \sim +9999 (Detection unit)

[Default Setting]: 0

Set the backlash compensation value of each axis.

After connecting power supply, it compensates the backlash at the first time when the machine moves in the direction opposite with that of the reference point return.

Detection units are related with parameter No.1820 (command multiply ratio CMR) and the minimum movement units, about the relations between the setting units and the minimum movement units, refer to parameter No.1820 introduction.

1853	The setting value of reverse interval compensation pulse
	frequency

[Modification authority] : Machine

[Parameter Type] : Word

[Value Range] : 1~32

[Default Setting]: 12

The setting value of reverse interval compensation pulse frequency (1~32)

2071 Each axis backlash acceleration and deceleration valid time constant (BAT)

[Modification authority] : Machine

[Parameter Type] : Word axis

 $\llbracket Value Range \rrbracket : 0{\sim}100 \text{ ms}$

[Default Setting]: 40

Set each axis backlash acceleration and deceleration valid time constant.

Appendix 1.9 Parameter of Input/Output

		#7	#6	#5	#4	#3	#2	#1	#0
3001							RWM		
[Modificat	ion au	Ithority]	Machine	1					

[Default Setting]: 0000 0000

#2 RWM Whether output the rewinding signal in the program back within the program

memory (RWD)

- 0: Do not output
- 1: Output

	#7	#6	#5	#4	#3	#2	#1	#0
3003	ESP					ΙΤΧ		ITL

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

『Default Setting』: 1000 0000

#0 ITL To interlock the signal of the overall axes

- 0: Disabled
- 1: Enabled

#2 ITX To interlock the signal of each axis

- 0: Disabled
- 1: Enabled

#7 ESP External emergency stop alarm input signal (X0.5)

- 0: When the signal is 0 (low level), emergency stop alarms
- 1: When the signal is 1 (high level), emergency stop alarms

	#7	#6	#5	#4	#3	#2	#1	#0
3004			ОТН					BSL

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

『Default Setting』: 0010 0000

#0 BSL Block starts the interlocking signal and the cutting block starts the interlocking signal

- 0: Disabled
- 1: Enabled
- #5 OTH Overtravel limit signal
 - 0: Check
 - 1: Not check

Note: After the overtravel alarm occurs, this parameter is altered to 1 (without detection), and the alarm will not be cleared pressing the resetting again; it is necessary to move inside the stroke by hand; and then set this parameter to 0, the alarm is eliminated accordingly.

#7	#6	#5	#4	#3	#2	#1	#0
πι	πV	πV	π-	π υ	π_	πι	πv

<u>惫</u>г⁻州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

3006		EPS	EPN	GDC
------	--	-----	-----	-----

[Modification authority] : Machine

[Default Setting]: 0000 0000

#0 GDC Deceleration signal of the reference point return

0: Use X signal

1: Use G196 (X signal is invalid)

#1 EPN In the external workpiece number index, select the signal for specifying the workpiece.

- 0: Usable signals PN1~PN16
- 1: Usable extension signals EPN0~EPN13

#2 EPS The start signal at the external workpiece number index

- 0: Use the automatic operation start signal ST
- 1: Use the external workpiece index start signal EPNS

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Default Setting]: 0000 0000

#2 XSG The X address is distributed to the skip signal and measurement position arrival signal

- 0: It is the fixed address
- 1: Changeable any X addresses

	#7	#6	#5	#4	#3	#2	#1	#0
3009			DECx					

[Modification authority] : Machine

[Parameter Type] : Bit axis

[Default Setting]: 0010 0000

#5 DECx: Deceleration signal of the reference point return

0: When the signal is 0 (low level), decelerate.

1: When the signal is 1 (high level), decelerate.

3010

Dwell time of the gating signals MT, TF and SF (MFT)

[Modification authority] : Machine

 $\llbracket \text{Value Range}
rbracket$: 16 ms \sim 32767 ms

[Default Setting]: 16

Set the time from sending codes M, S, T and B, till MF, SF, TF and BF being sent.

2011	Minimum width (MAW)of completion signals (FIN)of M, T and S
3011	(MAW)

[Modification authority] : Machine

 $\llbracket Value \ Range \rrbracket$: 16 ms \sim 32767 ms

[Default Setting]: 16

Set the minimum width of the completion signals (FIN) of M, S, T and B function.

Note: The time is set by 8ms, if its setting value does not the multiplication of the 8; the carry-bit is multiplication of the 8.

Address to be assigned to skip signals

[Modification authority] : Machine

[Value Range]: $0 \sim 127$

[Default Setting]: 0

Set the skip signal to assort the X address and measure the address of the position arrival signal (0 \sim 127).

[Modification authority] : Machine

[Value Range]: $0 \sim 127$

[Default Setting]: 3

Set the X address to be assigned to the reference position return deceleration signal for each axis $(0 \sim 127)_{\circ}$

3014

Bit position to be assigned to reference position return deceleration signals

[Modification authority] : Machine

[Value Range]: 0~7

[Default Setting]: 0

Set the X bit position to be assigned to the reference position return deceleration signal (*DECn) for each axis $(0 \sim 7)_{\circ}$

3017

Output time of the resetting signal (RST)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

『Value Range』: 0∼255

[Default Setting]: 32

Set the dwell time when the resetting signal RST is output.

RST signal output time =resetting time + the parameter value X 16ms.

3019

Distribute the address of tool compensation value write-in signal

[Modification authority] : Machine

 $[Value Range]: 0 \sim 127$

[Default Setting]: 0

Set the address of tool compensation value write-in signal for distributing the X address.

Distribute the bit address of the skip signal X address

[Modification authority] : Machine

『Value Range』: 0∼7

[Default Setting]: 0

Set the bit address for distributing the skip signal X address.

3021

Distribute the bit address of the multistep skips signal SKIP2

[Modification authority] : Machine

『Value Range』: 0~7

『Default Setting』: 0

Set the bit address for distributing the multistep skips signal SKIP2

3022

Distribute the bit address of the multistep skips signal SKIP3

[Modification authority] : Machine

0

[Value Range]: 0~7

『Default Setting 』:

Set the bit address for distributing the multistep skips signal SKIP3

3023

Distribute the bit address of the multistep skips signal SKIP4

[Modification authority] : Machine

『Value Range』: 0∼7

Set the bit address for distributing the multistep skips signal SKIP4

3030

Allowable digits of M code (MCB)

[Modification authority] : Machine

 $\llbracket Value \ Range \rrbracket : 2{\sim}8$

[Default Setting]: 4

Set the allowable digits of M code.

3031

Allowable digits of S code (SCB)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

 $\llbracket Value Range \rrbracket : 1{\sim}5$

[Default Setting]: 4

Set the allowable digits of S code.(Maximum 5 digits in S code is allowed).

3032

Allowable digits of T code (TCB)

 $\llbracket \mathsf{Modification} \ authority \rrbracket \ : \mathsf{Machine}$

『Value Range』: 2∼8

[Default Setting]: 4

Set the allowable digits of T code.

3033

Allowable number of digits for the B code (BCN)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

0

『Value Range』: 0~8

[Default Setting]:

The allowable bit number (0 \sim 8) of B code (The 2nd miscellaneous function)

3050

I/O unit quantity (IOMAX) of the system control

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Value Range]: 0~4

[Default Setting]: 0

Set the I/O unit quantity (up to 4) controlled by system.

3051

The logic ID number (IOID1) of system control I/O unit 1

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

 Value Range .
 0,100~110

[Default Setting]: 0

Set the logic ID number (0 means that this I/O unit disconnects with the GSKLink) of the system

爲广州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

control I/O unit 1.

3052

The logic ID number (IOID2) of system control I/O unit 2

[Modification authority] : Machine

0

0

0

0

[Value Range]: 0,100~110

[Default Setting]:

Set the logic ID number (0 means that this I/O unit disconnects with the GSKLink) of the system control I/O unit 2.

The logic ID number (IOID3) of system control I/O unit 3

 $\llbracket \mathsf{Modification} \ authority \rrbracket$: Machine

[Value Range]: 0,100~110

『Default Setting』:

Set the logic ID number (0 means that this I/O unit disconnects with the GSKLink) of the system control I/O unit 3.

The logic ID number (IOID4) of system control I/O unit 4

[Modification authority] : Machine

[Value Range]: 0,100~110

『Default Setting』:

Set the logic ID number (0 means that this I/O unit disconnects with the GSKLink) of the system control I/O unit 4.

The logic ID number (GWID) of the system gateway control

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

 Value Range]:
 0,200~254

『Default Setting』:

This parameter setting system controls the logic ID number of the gateway. (0 means not use the gateway

	πι	#0	#5	#4	#3	#2	#1	#0
3061							GWP	GWC

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

 $\llbracket \mbox{Validate method}
rbracket$: After power-on

[Parameter Type]: Bit

I Default Setting I:0000 0000

#0 GWC Whether the gateway data uses the CRC verification

- 0: Disabled
- 1: Enabled

#1 GWP Whether the gate data uses the communication agreement

- 0: Disabled
- 1: Enabled

Appendix 1.10 Parameter of Display and Editing

	_	#7	#6	#5	#4	#3	#2	#1	#0
3101					BGD				

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#4 BGD Background editing selects the programs selected at the foreground

- 0: Editable
- 1: Unedited

	#7	#6	#5	#4	#3	#2	#1	#0
3104	DAC	DAL	DRC	DRL				MCN

[Modification authority] :Machine

[Default Setting] : 1100 0000

#0 MCN Display the machine position

0: Display based on the output units

(There isn't any connection with the metric system or the inch system, the metric machine displays as the metric units, the inch machine displays as the inch units.)

1: Display based on the input units

(When it is input in the metric system, display in the metric system; when it is input in the

inch system, display in the inch system)

#4 DRL Display the relative position

- 0: Display the actual position including the tool offset (T serial)
- 1: Display the programming position without the tool offset (T serial)

Note: In T serial, the movement coordinate system compensates the tool appearance, (parameter LGT (NO.5002#4) is 0), display the programming position which ignores the tool compensation (the parameter is set as 1). However, the programming position without the tool appearance compensation value can not display.

#5 DRC Display the relative position

0: Display the actual position including the tool nose radius compensation (T serial)

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

1: Display the programming position without the tool nose radius compensation (T serial)

#6 DAL Display the absolute position

- 0: Display the actual position including the tool offset (T serial)
- 1: Display the programming position without the tool offset (T serial)

Note: In T serial, the movement coordinate system compensates the tool appearance (parameter LGT (NO.5002#4) is 0), and display the programming position which ignores the tool compensation (the parameter is set as 1). However, the programming position without the tool appearance compensation value can not display.

#7 DAC Display the absolutely position

- 0: Display the actual position including the tool nose radius compensation (T serial)
- 1: Display the programming position without the tool nose radius compensation (T serial)

	#7	#6	#5	#4	#3	#2	#1	#0
3107					REV	DNC		

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Default Setting]: 0001 0000

#2 DNC Whether clear display of DNC running programs during resetting

0: Not clear

1: Clear

#3 REV Display the actual speed in feeding/rev mode

- 0: mm/min or inch/min
- 1: mm/rev or inch/rev

	#7	#6	#5	#4	#3	#2	#1	#0
3110						AHC		

[Modification authority] : Equipment management authority

[Default Setting]: 0000 0100

#2 AHC Whether the alarm resume can be cleared by soft keys

0: Yes

1: No

	 #7	#6	#5	#4	#3	#2	#1	#0
3111	NPA							

[Modification authority] : Equipment management

[Default Setting]: 1000 0000

#7 AHC Whether switch to alarm/information window when alarm occurs or information is

input:

0: No

1: Yes

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

		_	#7	#6	#5	#4	#3	#2	#1	#0
3	3114									IPC
Ĩ٨	/lodificat	ion au	Ithority』	: Equipmo	ent mana	gement				
『D	Default S	etting	』: 0000	0000						
#0	IPC C	On the	current	interface,	, press th	e functio	n keys			
	0: Swit	ch inte	o the inte	rface						
	1: Not s	switch	into the	interface						
		_	#7	#6	#5	#4	#3	#2	#1	#0
3	3115									NDPx
Ĩ٨	/lodificat	ion au	uthority]	Equipmo	ent mana	gement				
٢D	Default S	etting	』: 0000	0000						
#0	NDPx	Whe	ther disp	lays the o	current p	osition				
#0	NDPx 0: YE	Whe S	ther disp	lays the o	current p	osition				
#0	NDPx 0: YE 1: NO	Whe S	ther disp	lays the o	current p	osition				
#0	NDPx 0: YES 1: NO	Whe S	ther disp	lays the o	current p	osition				
#0	NDPx 0: YES 1: NO	Whe S	ther disp #7	lays the of the	#5	#4	#3	#2	#1	#0
#0	NDPx 0: YE 1: NO	Whe S	ther disp #7	#6 PSR	#5	#4 NE9	#3	#2	#1	#0
#0 3 『 M	NDPx 0: YE 1: NO 3200 Aodificat	Whe S] ion au	#7	#6 PSR Equipme	#5	#4 NE9 gement	#3	#2	#1	#0
#0 3 『№ 『□	NDPx 0: YE 1: NO 3200 Aodificat	Whe S ion au	#7 #7 Ithority』 』: 0000	#6 PSR Equipme 0000	#5	#4 NE9 gement	#3	#2	#1	#0
#0 3 『N 『D #4	NDPx 0: YE 1: NO 3200 Aodificat Default S NE9	Whe S ion au setting Whe	#7 ithority』 :0000	#6 PSR Equipme 0000 bid the c	#5 ent mana	#4 NE9 gement	#3 as prog	#2	#1 ing, del	#0
#0 3 『M 『D #4 an	NDPx 0: YE: 1: NO 3200 Aodificat Default S NE9 NC copy,	Whe S ion au etting Whe etc. 1	#7 ithority』 』: 0000 other forl	#6 PSR Equipme 0000 bid the o with the	#5 ent mana	#4 NE9 gement ns, such	#3 as prog 9000.	#2	#1 ing, del	#0
#0 3 『M 『D #4 an	NDPx 0: YE: 1: NO 3200 Modificat Default S NE9 nd copy, 0: Allc	Whe S ion au setting Whe , etc. 1	#7 thority] : 0000 ther forl followed	#6 PSR Equipme 0000 bid the o with the	#5 ent mana	#4 NE9 gement ns, such n number	#3 as prog 9000.	#2 Iram edit	#1 ing, del	#0
#0	NDPx 0: YE: 1: NO 3200 Modificat Default S I NE9 nd copy, 0: Allc 1: For	Whe S ion au setting Whe setc. f ow	#7 thority] : 0000 ther forl followed	#6 PSR Equipme 0000 bid the o with the	#5 ent mana	#4 NE9 gement ns, such n number	#3 as prog 9000.	#2	#1 ing, del	#0 etion, mo
#0 ₹ 『∩ #4 an #6	NDPx 0: YE: 1: NO 3200 Addificat Default S A NE9 nd copy, 0: Allo 1: For PSR	Whe S ion au setting Whe ow bid Whet	#7 "thority" ": 0000 ther forl followed	#6 PSR Equipme 0000 bid the o with the	#5 ent mana operation program	#4 NE9 gement ns, such n number	#3 as prog 9000. e protec	#2 ram edit	#1 ing, del	#0 etion, mo
#0 『N 『D #4 an #6	NDPx 0: YE: 1: NO 3200 Aodificat Default S A NE9 nd copy, 0: Allo 1: For PSR 0: For	Whe S ion au setting Whe bid Whet	#7 "thority" 1 : 0000 ther forl followed	#6 PSR Equipme 0000 bid the o with the	#5 ent mana operation program	#4 NE9 gement ns, such n number	#3 as prog 9000. e protect	#2 ram edit	#1 ing, del	#0 etion, mo

	#7	#6	#5	#4	#3	#2	#1	#0
3202			CPD					NE8

[Modification authority] : Equipment management

[Default Setting]: 0010 0000

#0 NE8 Whether forbid the operations, such as program editing, deletion, modification and copy, etc. of the program number $8000 \sim 8999$.

- 0: Allow
- 1: Forbid

<u>@</u>,Г[⊷]州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

#5 CPD When NC program is deleted, confirm information and keys

- 0: Not display
- 1: Display

	#7	#6	#5	#4	#3	#2	#1	#0
3203	MCL	MER						

[Modification authority]: Equipment management

『Default Setting』: 0000 0000

#6 MER When the single block runs in MDI mode, after the last block is executed in the program,

whether the executed programs are

- 0: Not deleted
- 1: Deleted

Note: Even MER is 0, when "%" (end code) is read in and executed, the program is also deleted ("%" is auto inserted at the end of the program).

#7 MCL Whether delete the programs edited in MDI mode through resetting

- 0: Not delete
- 1: Delete

	#7	#6	#5	#4	#3	#2	#1	#0
3209								MPD

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#0 MPD When the subprogram is executed, whether display the main program number

- 0: Not display
- 1: Display

3212

NE9 needs the program quantity (CN9) protected from program

[Modification authority] : Equipment management

[Value Range]: 0~999

[Default Setting]: 0

The programs after the No.9000 to be protected are set on the quantity, the program number protection range is 9000~9000+(No.3212), 0 is the overall protections (0 \sim 999).

Increment value (INC) during the serial number being auto inserted (INC)

[Modification authority] :Equipment management

 $\llbracket Value Range
rbracket : 1{\sim}9999$

[Default Setting]: 10

When the serial number (parameter SEQ (NO.0000#5) is 1) is auto inserted, it is the increment value of the serial number in each block.

	1							
3281		Language displayed on the screen (LANG)						
[Modificati	[Modification authority]: Machine							
『Value Range』。 0∼1								
『Default S	『Default Setting』: 1							
0: English	1:	Chinese						
3282		Reminding days before power off in the limited time (NDAYS)						
_	-							

[Modification authority] : Machine

[Value Range]: 1~30

[Default Setting]: 3

Appendix 1.11 Parameter of Programming

	#7	#6	#5	#4	#3	#2	#1	#0
3401		GSB				NCK		DPI

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Default Setting]: 0000 0001

#0 DPI The address is with the decimal point, but when the decimal point is omitted, the setting is as below:

- 0: Take them as the minimum setting units
- 1: Take them as the units of mm, inch and sec

#2 NCK During grammar checking, there are same N numbers

0: Alarm

1: Not alarm

#6 GSB Set the G code format

- 0: G code system A
- 1: G code system B

	#7	#6	#5	#4	#3	#2	#1	#0
3402	G23	CLR		FPM	G91			G01

[Modification authority] : Equipment management

[Default Setting]: 0101 0000

#0 G01 Mode during connecting the power supply

- 0: G00 mode (orientation)
- 1: G01 mode (linear interpolation)

#3 G91 In the G code system B, the system defaults as:

- 0: G90 mode (Absolute command)
- 1: G91 mode (Incremental command)

#4 FPM System defaults after power on

- 0: Feeding/rev
- 1: Feeding/min

#6 CLR Press the resetting key on MDI panel, the external resetting signal and the emergency stops, G code mode and the feedrate are

- 0: Hold mode
- 1: Switched to the power on state

#7 G23 when the power supply is connected, it is

- 0: G22 mode (Check the memory stroke)
- 1: G23 mode (Not check the memory stroke)

	_	#7	#6	#5	#4	#3	#2	#1	#0
3403			AD2	CIR	RER				

 $[Modification \ authority] \ : Equipment \ management$

- [Default Setting]: 0000 0000
- #4 RER During arc interpolation, when R goes over the minor finishing point and isn't in the arc, and the radius doesn't exceed error:
 - 0: Calculate the new radius, the path is semicircle

1: P/S alarms

- #5 CIR In arc interpolation commands (G02, G03), there are no distance (I, J and K) from the starting point of the command to the center, and the arc radius isn't commanded, either.
 - 0: Linear interpolation moves to the finishing point

1: P/S alarms

- #6 AD2 In one block, two or two more same addresses are commanded
 - 0: The following commands are valid.
 - 1: The program is taken as wrong, P/S alarms.

Note: It alarms when the parameter is 1 and two or two more G codes of one group are commanded in one block.

3404 M3B EOR M02 M30 Image: Mage: Mage			_	#7	#6	#5	#4	#3	#2	#1	#0	_
[Modification authority] : Equipment management [Default Setting] : 0000 0000 #4 M30 During auto running, process M30 command 0: return to the beginning of the program. #5 M02 During auto running, process M02 command 0: return to the beginning of the program. #5 M02 During auto running, process M02 command 0: return to the beginning of the program. #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 Industry of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 INDE INDEL INDEL IModification authority] : Equipment management [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output	34	404		M3B	EOR	M02	M30					
[Default Setting]: 0000 0000 #4 M30 During auto running, process M30 command 0: return to the beginning of the program. 1: doesn't return to the beginning of the program. #5 M02 During auto running, process M02 command 0: return to the beginning of the program. #6 #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP AUX [Modification authority]: Equipment management [Default Setting]: 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input 0: The metric input is identical with the inch input	ſМ	odificat	ion au	thority	Equipme	ent mana	gement					
 #4 M30 During auto running, process M30 command return to the beginning of the program. #5 M02 During auto running, process M02 command return to the beginning of the program. #5 M02 During executing the program. doesn't return to the beginning of the program. doesn't return to the program. doesn't return to the program. doesn't return to the program. doesn't command with decimal point, as well the override corresponding to the command output. doesn't corresponding to the command output is identical with the inch input 	ΓDe	efault S	Setting] :0000	0000							
 0: return to the beginning of the program. 1: doesn't return to the beginning of the program. #5 M02 During auto running, process M02 command 0: return to the beginning of the program. 1: doesn't return to the beginning of the program. #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 Image: DDP AUX [Modification authority]: Equipment management [Default Setting]: 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input 	#4	M30	Durin	ig auto ru	unning, p	rocess M	30 comm	and				
1: doesn't return to the beginning of the program. #5 M02 During auto running, process M02 command 0: return to the beginning of the program. 1: doesn't return to the beginning of the program. #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405		0: retu	urn to	the begin	ning of th	ne progra	m.					
 #5 M02 During auto running, process M02 command return to the beginning of the program. doesn't return to the beginning of the program. #6 EOR During executing the program, read in "%" (program end) P/S alarms (stop auto running, display alarm state) Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block One Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405		1: doesn't return to the beginning of the program.										
 0: return to the beginning of the program. 1: doesn't return to the beginning of the program. #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP	#5	M02	M02 During auto running, process M02 command									
1: doesn't return to the beginning of the program. #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 [Modification authority] : Equipment management [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input		0: retu	urn to	the begin	ning of th	ne progra	m.					
 #6 EOR During executing the program, read in "%" (program end) 0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP AUX [Modification authority] : Equipment management [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input		1: doe	esn't re	eturn to tl	ne beginn	ing of the	e program	1.				
0: P/S alarms (stop auto running, display alarm state) 1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP AUX [Modification authority] : Equipment management [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input	#6	EOR	Durii	ng execu	ting the p	orogram,	read in "	%" (progr	ram end)			
1: Not alarm (auto running stops, the system resets) Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405		0: P/S alarms (stop auto running, display alarm state)										
Note: When performing the "%" (end-of-program), CNC resets instead of closing the miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP AUX [Modification authority] Equipment management AUX [Default Setting] 0000 0000 With decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input 0: The metric input is identical with the inch input		1: Not alarm (auto running stops, the system resets)										
miscellaneous function output. #7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405		Note: When performing the "%" (end-of-program), CNC resets instead of closing the										
#7 M3B The quantity of M codes which can be commanded in one block 0: One 1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP AUX [Modification authority] : Equipment management AUX [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input	<i>щ</i> ,		misce	llaneous	function o	utput.				bla ala		
1: Maximum three #7 #6 #5 #4 #3 #2 #1 #0 3405 DDP AUX [Modification authority] : Equipment management [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input	#1		i ne o	quantity	ot ini code	es which	can be co	ommande	a in one	DIOCK		
#7 #6 #5 #4 #3 #2 #1 #0 3405 DDP DDP AUX [Modification authority] : Equipment management AUX [Default Setting] : 0000 0000 H0 AUS #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: 0: The metric input is identical with the inch input		0. On	e	a thraa								
#7 #6 #5 #4 #3 #2 #1 #0 3405 DDP DDP AUX [Modification authority] : Equipment management AUX [Default Setting] : 0000 0000 For the settion, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input		1.1018	ximun	1 unree #7	40	#6	#4	40	#0	11 4	#0	
3405 DDP AUX [Modification authority] : Equipment management [Default Setting] : 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input		105]	#1	#0	#3	#4	#3	#2	#1	#0	
 [Default Setting]: 0000 0000 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input 	34 	605									AUX	
 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input 			ion au	Ithority]		ent mana	gement					
 #0 AUS In the 2nd miscellaneous function, the command counter decimal point input command with decimal point, as well the override corresponding to the command output 0: The metric input is identical with the inch input 	∥D€		etting]:0000		. .	•					
output 0: The metric input is identical with the inch input	#0	AUS	In the	2nd mis	scellaned	bus funct	lion, the	comman 	d counte	er decim	nal point in	put
0: The metric input is identical with the inch input	com	mand	with	decimal	point, a	is well t	he overr	ide corr	espondi	ng to t	he comma	ind
U: The metric input is identical with the inch input	outp	out					in ala 1					
		U: The	e metr	ic input is	adentical	with the	inch inpu	[1. C. II		

#5 DDP The angle command is directly input based upon the drawing dimension

- 0: Common specification
- 1: Command supplementary angle
- 3410

Circular radius allowable error (CRE)

[Modification authority] : Equipment management

『Value Range』: 0~9999 9999

Setting unit	IS-B	IS-C	Unit
--------------	------	------	------

爲Ր℠州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Input in mm	0.001	0.0001	mm
Input in inch system	0.0001	0.00001	inch

[Default Setting]:0

Set the allowable error value of arc interpolation (G02, G03) starting point radius and its finishing

point radius. P/S alarms when arc interpolation radius error is more than the limit value.

[Modification authority] : Equipment management

0

[Validate method]: Immediately

[Parameter Type]: Word

[Value Range]: 0∼9999

『Default Setting 』:

This parameter sets the M code for stopping the buffer. Before ending the treatment of the M function at the side of the machinery, it is necessary to perform the operation treatment specified by M code by machinery, and then set this code.

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Default Setting]: 0000 0000

#0 AUP In the 2nd miscellaneous function command, the counter decimal point input, the

command with decimal point and the negative value command

- 0: Disabled
- 1: Enabled

	#7	#6	#5	#4	#3	#2	#1	#0
3453								CRD

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#0 CRD Chamfering/corner R is valid (the parameter CCR(No.8134)="1")

0: Chamfering/corner R is enabled.

1: Direct drawing dimension programming is enabled.

[Modification authority] : Equipment management

[Validate method]: Immediately

[Parameter Type]: Word

[Value Range]: 0,65~67, 85~87

0

『Default Setting』:

3460

The address $(0,65 \sim 67, 85 \sim 87)$ for the second miscellaneous function, when it is 0, the second miscellaneous function is off.

Appendix 1.12 Parameter of Screw Pitch Error Compensation

	#7	#6	#5	#4	#3	#2	#1	#0
3605								BDPx
[Modification	n authority]	: Machine	;					
[Validate me	thod]: Afte	er power-o	n					
Value Rang	『Value Range』: Bit axis							
I Default Set	ting』: 0	000 0000						
#0 BDPx	Whether u	se the bi-	direction	al pitch	error cor	npensati	on	
0: NO								
1: YES								
2620	Scre	w pitch er	ror com	pensatio	n numbe	r in each	axis ref	erence
3020				point	(NPR)			

[Modification authority] :Machine

『Validate method』 : After power-on 『Parameter Type』 : Word axis 『Value Range』 : 0∼1023

[Default Setting]: 0

3621

Number of the furthest screw pitch error compensation point of each axis in negative direction (NEN)

[Modification authority] :Machine

[Validate method] : After power-on

[Parameter Type] : Word axis

 $\llbracket Value Range \rrbracket : 0{\sim}1023$

[Default Setting]: 0

The parameter sets the number of the furthest screw pitch error compensation point of each axis in negative direction.

3622	Number of the furthest screw pitch error compensation point of
	each axis in positive direction (NEP)

[Modification authority] :Machine

 $\llbracket Validate method \rrbracket$: After power-on

 $\llbracket \texttt{Parameter Type} \rrbracket$: Word axis

 $\llbracket Value Range \rrbracket : 0{\sim}1023$

[Default Setting]: 0

The parameter sets the number of the furthest screw pitch error compensation point of each axis in positive direction.

Note: The parameter setting value should be greater than that of parameter NO.3620.

3623

Each axis screw pitch error compensation override (PCM)

 $\llbracket \mathsf{Modification} \ authority \rrbracket \ :\mathsf{Machine}$

 $\llbracket \mbox{Validate method} \ \rrbracket$: After power-on

 $\llbracket \texttt{Parameter Type}
rbracket$: Word axis

 $\llbracket Value Range \rrbracket : 0{\sim}100$

[Default Setting]: 0

Set the override of screw pitch error compensation along each axis.

If the override is set as 1, the detection unit is same as that of compensation.

If the override is set as 0, the override is same as one when it is set as 1.

3624

Each axis screw pitch error compensation point interval (PCI)

[Modification authority] :Machine

[Validate method] : After power-on

[Parameter Type] : Word axis

 \llbracket Default Setting rbracket : 0 \sim 9 999 999

[Default Setting]: 0

Setting unit	IS-B	IS-C	Unit
Input in metric system	0.001	0.0001	mm
Input in inch system	0.0001	0.00001	inch
Rotary axis	0.001	0.0001	deg

The screw pitch compensation points are distributed in equal interval, and the interval value of each axis is set respectively. The minimum value of the interval is limited and set by the following formula: the minimum value = the maximum feedrate (rapid feedrate) / 7500.

Unit: Screw pitch compensation minimum interval: mm, inch and deg.

Maximum feedrate: mm/min, inch/min and deg/min.

For example: When the maximum feedrate is 15000mm/min, the minimum value of the screw pitch error compensation interval is 2mm.

But, according to the setting override, when the absolute value of the compensation point value exceeds 100, the interval of the compensation point is magnified by the override which is calculated by the following formula.

Override = Max compensation amount (absolute value)/128 (round up the digits after the decimal point)

Screw pitch compensation minimum interval = Value, which is obtained from the above maximum feedrate X override.

Note: The unit of the screw pitch compensation value is same as that of the detection.

The detection unit is relative with parameter No.1820 (command magnify ratio CMR) and the minimum movement unit, about the relation between the setting units and the minimum movement units, refer to the introduction of parameter No.1820.

3626

The compensation point (NPN) of the closest negative side for the bi-directional pitch error compensation

[Modification authority] :Machine

[Validate method] : After power-on

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

[Parameter Type] : Word axis

□ Default Setting **□** : 0~1023

[Default Setting]: 0

When using the bi-directional pitch error compensation, set the closest negative side compensation point number when the tool moves along with the negative direction.

	The pitch error compensation value (PCD) in the reference point
3627	moves to the reference point from the negative direction of the origin
	direction return

[Modification authority] :Machine

[Validate method]: After power-on

[Parameter Type] : Word axis

『Default Setting』: -32768∼32767

[Default Setting]: 0

When the origin direction is set as positive/negative direction; the pitch error compensation value in the reference point when the movement is set from negative/positive direction based upon absolute value.

3628	The setting value of the pitch compensation pulse frequency (NPF)	
[Modificati	n authority I ·Machine	

Modification authority :: Machine

[Parameter Type] : Word

[Default Setting] :1∼32

[Default Setting]: 8

The setting value of the pitch compensation pulse frequency

Appendix 1.13 Parameter of the Spindle Control

[Modification authority] : Equipment management

[Parameter Type]: Bit type

[Default Setting]: 0000 0000

#0 CSC Whether the coordinate value is cleared (Bit 2 of parameter 3700 sets to 0, this parameter is enabled) when the CS outline control shifts to spindle mode.

- 0: Keep
- 1: Clear

#2 CSB Whether the coordinate system is automatically set up when CS outline control shifts to the position mode

- 0: Disabled
- 1: Enabled

	#7	#6	#5	#4	#3	#2	#1	#0
3703					MPP			

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#3 MPP Whether replaces the signal SWS to perform the spindle selection by program command in the multi-axis control.

- 0: NO
- 1: YES

	#7	#6	#5	#4	#3	#2	#1	#0
3704	SCS3	SCS2						

[Modification authority] : Machine

[Validate method] : After power-on

[Default Setting]: 0000 0000

#6 SCS2 Whether Cs contour control of the 2nd spindle is

- 0: Invalid
- 1: Valid
- **#7** SCS3 Whether Cs contour control of the 3rd spindle is
 - 0: Invalid
 - 1: Valid

Note: Parameters SCS2 and SCS3 can be enabled by using the Cs outline control (that is, bit 2 of parameter No.8133 (SCS) is "1")

	#7	#6	#5	#4	#3	#2	#1	#0
3705				EVS				

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#4 EVS For S command, use spindle control function (spindle analog output or spindle serial output)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

- 0: Not output S code and SF
- 1: Output S code and SF

	#7	#6	#5	#4	#3	#2	#1	#0
3706						MPA		

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#2 MPA In the multi-spindle control, when the spindle selection of the address P is set, and when the P does not specify with the S command:

0: Alarm issues (PS5303)

1: Use the last P specified by S_ P_;. After the power is turned on, use the value of parameter (№3775) when never ever specifies the P.

	#7	#6	#5	#4	#3	#2	#1	#0
3708		TSO				SSC	SAT	SAR

[Modification authority]: Equipment management

[Default Setting]: 0000 0011

#0 SAR Whether check the spindle speed reaching signal

- 0: Not check
- 1: Check

#1 SAT Whether check the spindle speed reaching signal when the thread cutting block is

begun to be executed.

- 0: Check or not, which is set by parameter SAR (NO.3708#0)
- 1: Must check, which isn't connected with parameter SAR

Note: When the thread cutting block is continuously executed, the spindle speed reaching signal isn't checked in the thread cutting block after the 2nd block.

#2 SSC Whether check the spindle speed when performs the cutting feed

0: Do not check

1: Check

#6 TSO Whether the spindle override is valid during thread processing or tapping cycle

- 0: Invalid (fixed as 100%)
- 1: Valid

Note: In rigid tapping, the override is fixed as 100%, and there isn't any connection with the setting of the parameter.

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#0 SAM Times of sampling in spindle average speed

0: Four times (Generally it is set as 0)

1: One time

#2 MSI SIND signal is valid during multi-spindle control

0: It is only valid for the 1st spindle. (SIND signal of the 2nd spindle becomes invalid.)

1: No matter whether each spindle is selected or not, it is valid for all spindles. (Each spindle has its own SIND signal.)

Spindle number control of CNC (CCS)

[Modification authority] : System

[Value Range]: 1∼3

『Default Setting』:

Set the spindle number of the CNC control

1

	#7	#6	#5	#4	#3	#2	#1	#0
3713		MPC						

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#6 MPC In the multi-spindle, when the spindle selection is performed based upon the program command of address P, whether is automatically perform position encoder feedback shifting used in the thread cutting or feed/rev. based upon the selected spindle

- 0: Do not shift
- 1: Shift

3717

The amplifier number of each spindle (NSS)

[Modification authority] : System

[Validate method] : After power-on

[Parameter Type]: Word axis

『Value Range』: -4∼99

『Default Setting』:

Set the amplifier number distributing to each spindle

1

Set value by	Corresponding interface	Remark
--------------	-------------------------	--------

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

parameter		
0	Disconnect the spindle amplifier interface	
		The setting value is
1~00	Spindle connects the logic ID number by	identical with the
1 35	GSKLink	servo spindle logic ID
		number
	Four groups analog value output ports of the	
-1~-4	spindle interfaces 1 and 2 on the	
	corresponding the I/O unit 1	
	Four groups analog value output ports of the	
-11~-14	spindle interfaces 1 and 2 on the	
	corresponding the I/O unit 2	
	Four groups analog value output ports of the	anindle
-21~-24	spindle interfaces 1 and 2 on the	spindle
	corresponding the I/O unit 3	
	Four groups analog value output ports of the	
-31~-34	spindle interfaces 1 and 2 on the	
	corresponding the I/O unit 4	

3720 Revo

Revolution of each spindle coder (CNT)

[Modification authority] : Machine

 $\llbracket Validate method \rrbracket$: After power-on

[Parameter Type]: Word axis

[Value Range]: 100~99999999

[Default Setting]: 1024

The revolution of each spindle coder is set

3721

Number of position coder gear teeth for each spindle (GOE)

[Modification authority] : Machine

[Parameter Type]: Word axis

[Value Range]: 1∼9999

『Default Setting 』: 1

Set the number of position coder gear teeth for each spindle during the speed control (feeding per revolution, thread cutting, etc).

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

3722

Number of gear teeth for each spindle (GOS)

[Modification authority] : Machine

[Parameter Type]: Word axis

1

『Value Range』: 1∼9999

『Default Setting』:

Set the number of gear teeth for each spindle during the speed control (feeding per revolution, thread cutting, etc).

Channel number corresponding to each spindle coder (CSE)

[Modification authority] : Machine

『Validate method』 : After power-on

[Parameter Type]: Word axis

『Value Range』: 0~2

[Default Setting]: 0

Set the channel number corresponding to each spindle coder.

Value set by the parameter	Corresponding channel			
value set by the parameter	interface			
	The data of spindle oncoder is	It is used by using the GSKLink		
0	transmitted from CSKLink	spindle and without external		
	transmitted from GSRLink	encoder.		
1	With the 1 st coder channel			
	interface	It is used by using the external		
2	With the 2 nd coder channel	encoder.		
2	interface			

3730

Increment adjustment Value of the spindle speed analog output

(AGS)

[Modification authority] :Machine

 $\llbracket \mathsf{Parameter} \; \mathsf{Type} \rrbracket : \mathsf{Word} \; \mathsf{spindle}$

[Default Setting]: 1000

 $\llbracket Value Range
rbracket : 500{\sim}2000$

[Value unit]: 0.1%

Set the increment adjustment Value of the spindle speed analog output. (Adjusting method)

(1) Set the standard setting value 1000,

(2) Command the spindle speed when the spindle speed analog output maximum voltage is 10V.

.....

- (3) Measure the output voltage.
- (4) Set the value in the following formula in parameter No.3730:

setting value =
$$\frac{10(V)}{\text{measured voltage}(V)} \times 1000$$

(5) After setting the parameter, command the spindle speed analog output as the spindle speed of the maximum voltage, again, and confirm the output voltage as 10V.

3731

Compensation value of the spindle speed analog output offset voltage (CSS)

[Modification authority] :Machine

[Parameter Type] : Word spindle

 \llbracket Value Range \rrbracket : -1000 \sim +1000

『Default Setting 』:

The parameter sets the compensation value of the spindle speed analog output offset voltage.

1. Set the standard setting value as 0.

0

- 2. Command the analog output voltage as 0V, which is the theoretical spindle speed.
- 3. Measure the output voltage.
- 4. Set the value in the following formula in parameter No.3731.

setting value = $\frac{-8191 \times \text{offset voltage}(V)}{12.5}$

5. After setting the parameter, command the analog output voltage as 0V, again, which is the theoretical spindle speed and confirm the voltage as 0V.

3740

Dwell time of the detection spindle speed reaching signal (SAD)

 $\llbracket \mathsf{Modification} \ authority \rrbracket \ :\mathsf{Machine}$

[Value Range] : 5 \sim 32767ms

[Default Setting]: 1000

Set the dwell time from executing S function to detecting the spindle speed reaching signal.

Spindle maximum speed of gear 1 (MSG1)

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

3771	Constant surface speed control mode (G96) spindle minimum	
	speed (CFL)	

[Modification authority] :Machine

『Value Range』: 0∼32767r/min

[Default Setting]: 50

The parameter sets the spindle minimum speed when the constant surface speed control. During the constant surface speed control (G96), if the spindle speed is lower than the speed set by the parameter, it is limited in the parameter speed.

3772

Maximum spindle speed (MSS)

[Modification authority] :Machine

[Parameter Type] : Word spindle

 \llbracket Value Range rbracket : 0 \sim 32767r/min

[Default Setting]: 6000

The parameter sets the maximum spindle speed. The actual spindle speed is limited by the

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

maximum speed set by the parameter when the commanded spindle speed exceeds the maximum spindle speed, or the spindle speed after override exceeds the maximum spindle speed.

Note: 1. When the constant surface speed controls, no matter whether G96 or G97 is commanded, the spindle speed is limited by the maximum spindle speed.
2. When the setting value is 0, it is not limited by the speed.

3775

The default spindle in the multi-spindle selects the P command value (MPD)

[Modification authority] : System

[Validate method] : After power-on

[Value Range]: 0∼99

[Default Setting]: 0

In the multi-spindle control, when parameter MPP(NO.3703#3)=1 and MPA (NO.3706#2)

=1; there is no specification for the P command value in the command S_ P_ after the power is turned on.

3781	In multi-spindle control, when code P is used for spindle selection
	(MPS)

[Modification authority] : System

 $\llbracket \mbox{Validate method}
rbracket$: After power-on

0

 $[Value Range]: 0 \sim 99$

『Default Setting』:

When MPP(NO.3703#3)=1, In multi-spindle control, code P used for spindle selection is set with the parameter. And P code and S commands are specified in the same block

	#7	#6	#5	#4	#3	#2	#1	#0
4900								SFLR

[Modification authority] : Equipment management

[Parameter Type]: Bit axis

『Default Setting』: 0000 0000

#0 SFLR The setting unit of parameters 4911 and 4912 during the FLR in the spindle speed fluctuation detection function.

- 0: 1% is regarded as the unit
- 1: 0.1% is regarded as the unit

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

4911	The allowable rate q of the spindle arrival commanded speed	
	(SSQ)	

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

 $\llbracket Way \ of \ Validating \rrbracket$:

[Value Range]:

[Default Setting]: 100

The allowable rate q of the spindle arrival commanded speed is set in the spindle speed changing detection function

4912 The rate r of spindle change without sending the spindle spe changing detection alarm (SSR)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

 $\llbracket Way \ of \ Validating \rrbracket$:

[Value Range]:

[Default Setting]: 100

The rate r of spindle change is set without sending the alarm in the spindle speed change detection function.

The change magnitude i of the spindle speed without sending the spindle speed change detection alarm (SSI)

[Modification authority] : Equipment management

 $\llbracket Way \ of \ Validating \rrbracket$:

 $\label{eq:Value Range}$ $0{\sim}99999$

[Default Setting]: 100

The allowable magnitude i is set in the spindle speed change detection function without sending the alarm

4914	1
------	---

The time p from commanding the speed change to starting detecting the spindle speed change (SSP)

[Modification authority] : Equipment management

 $\llbracket \mbox{Way of Validating}
floor$:

[Value Range]: 1~999999

[Default Setting]: 100

In the spindle speed change detection function, the time p from commanding the speed change to starting detecting the spindle speed change

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Appendix 1.14 Parameter of Tool Compensation

	#7	#6	#5	#4	#3	#2	#1	#0
5001		EVO		EVR				

[Modification authority] : Equipment management

『Default setting』: 0000 0000

፩г≃州数控

- #4 EVR In tool nose compensation mode C, when the tool compensation value is changed
 - 0: It becomes valid from the next block which specifies T code.
 - 1: It becomes valid from the next buffer block.
- #6 EVO The rewritten value becomes valid when the compensation value of the tool position compensation mode is changed.
 - 0: It is valid from the next block which specifies T code.
 - 1: It is valid form the next buffer block.

	#7	#6	#5	#4	#3	#2	#1	#0
5002		LWM		LGT		LWT		LD1

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#0 LD1 Tool offset number

- 0: Specify through the last two digits of T code
- 1: Specify through the last one digit of T code

#2 LWT Tool wear compensation

0: Compensate through the tool traverse

1: Compensate through the coordinate system offset (there isn't any connection with LWM, and compensate in the block of T code)

#4 LGT Tool offset compensation mode

0: Compensate through the coordinate system offset (there isn't any connection with LWM, and compensate in the block of T code)

1: Compensate through the tool traverse

#6 LWM

- 0: Execute in T code block
- 1: Execute with axis movement meanwhile

Note: When LGT is 0, the offset is executed in T code block, and there isn't any connection with the parameter.

	#7	#6	#5	#4	#3	#2	#1	#0
5003		LVC				CCN		

[Modification authority] : Equipment management

[Default Setting] : 0000 0000

#2 CCN In the tool nose radius compensation mode, when the auto reference point return

(G28) is commanded,

- 0: the tool nose traverses to the intermediate point.
- 1: But it is canceled until it traverses to the reference point.

#6 LVC Tool offset value is

- 0: Not cleared during resetting
- 1: Cleared during resetting

Note: The tooll offset function elimination by resetting should be enabled in the non-MDI mode.

	#7	#6	#5	#4	#3	#2	#1	#0
5004					TS1		ORC	

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#1 ORC Tool offset value

- 0: Specified by the diameter value (axes programmed by the diameter value)
- 1: Specified by the radius value

#3 TS1 The tool compensation value is directly input the touch inspection of sensor in the B function

- 0: It performs by 4 contactors
- 1: It performs by 1 contactor

	#7	#6	#5	#4	#3	#2	#1	#0
5005			QNI			PRC		

[Modification authority] : Equipment management

[Default Setting] : 0000 0000

#2 PRC in direct input of tool offset compensation value and workpiece coordinate system offset amount, the PRC signal is

0: Used

1: Not used

#5 QNI The tool compensation measure value is directly input to the function B, the

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

selection of the tool compensation number:

- 0: Operator selects by cursor
- 1: It performs by inputting the signal from PLC

	#7	#6	#5	#4	#3	#2	#1	#0
5006							TGC	ΟΙΜ

[Modification authority] : Equipment management

[Validate method] : After power-on

[Default Setting]: 0000 0000

#0 OIM Switch between the inch system and the metric system, whether the tool offset value

is auto changed

- 0: Not changed
- 1: Changed

#1 TGC Command T code in G50, G04 or G10 block

- 0: Not alarm
- 1: P/S alarms

	#7	#6	#5	#4	#3	#2	#1	#0
5008		CNS	CNF	MCR	CNV		CNC	CNI

[Modification authority]: Equipment management

[Default Setting]: 0000 0000

#0 CNI The tool nose radius compensation is interference checked

- 0: Execute
- 1: Not execute

#1 CNC When the tool nose radius compensation is interference checked and the difference

between the programming movement direction and the offset movement direction is $90{\sim}270^\circ$

- 0: P/S alarms
- 1: Not alarm

#3 CNV The tool nose radius compensation (T serial) is interface checked and the vector is cleared

- 0: Execute
- 1: Not execute

#4 MCR If G41/G42 tool nose radius compensation is commanded in MDI mode, whether alarm

- 0: Not alarm
- 1: P/S alarm

Note: In MDI mode, the tool nose radius isn't compensated even it is set by the parameter.

#5 CNF When the tool nose radius compensation is interference checked, whether alarm when the internal full circle is cut

- 0: P/S alarms
- 1: Not alarm

#6 CNS The tool nose radius compensation is interference checked, whether alarm when the step is less than the tool radius

- 0: P/S alarms
- 1: Not alarm

	#7	#6	#5	#4	#3	#2	#1	#0
5009				TSD				GSC

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

『Default Setting』: 0000 0000

#0 GSC The tool compensation measure value is directly input the offset write input signal in function B

- 0: It inputs from one side of machinery
- 1: It inputs from one side of PLC

#4 TSD The tool compensation measure value is directly input in function B, so that the movement direction distinguish specification is:

- 0: Disabled
- 1: Enabled

5010

During the tool nose compensation, the limit value of the vector is ignored when the tool traverses along the corner outside (CLV)

[Modification authority] : Equipment management

 \llbracket Value Range rbracket : 0 \sim 16383

SETTING UNITS	IS-B	IS-C	UNITS
Input in metric system	0.001	0.0001	mm
Input in inch system	0.0001	0.00001	inch

[Default Setting]: 0

The limit value of the minor traverse value is ignored when the tool nose radius compensation is set and the tool traverses along the corner outside.

<u>@</u>┌─州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

5013

Maximum value of the tool wearing compensation value (MTW)

[Modification authority] : Equipment management

[Value Range]:

		IS-B	IS-C	
	Input in metric system	0.001 mm	0.0001 mm	
SETTING UNITS	Input in inch system	0.0001 inch	0.00001 inch	
	Input in metric system		0∼99 999 999	
SETTING RAINGE	Input in inch system	0 - 9 999 999		

[Default Setting]: 10

The parameter sets the maximum value of the tool wearing compensation value.

Note: When the set absolute value of the tool wearing compensation value exceeds the maximum value, it alarms: Input from MDI alarm: too many digits. Exceed range (XXXX——XXXX) (input range is in the bracket).

Input through G10 alarm: The offset value input by G10 is out of the specified range.

5015	In the manual tool measure, the distance (X1P) of the inspection	
	sensor X+ contact surface	

[Modification authority] : Equipment management

[Value Range]: -99999999 ~99999999

Set the record of each contact surface from measure reference position to inspection sensor. Specify the axis of diameter programming, setting value and diameter value.

5016	In the manual tool measure, the distance (X1M) of the inspection
	sensor X- contact surface

[Modification authority] : Equipment management

[Value Range]: -99999999-99999999

Set the record of each contact surface from measure reference position to inspection sensor. Specify the axis of diameter programming, setting value and diameter value.

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Value Range]: -999999999 ~99999999

Set the record of each contact surface from measure reference position to inspection sensor.

Specify the axis of diameter programming, setting value and diameter value.

In the manual tool measure, the distance (Z1M) of the inspection sensor Z- contact surface

[Modification authority] : Equipment management

[Value Range]: -99999999-99999999

Set the record of each contact surface from measure reference position to inspection sensor. Specify the axis of diameter programming, setting value and diameter value.

Tool compensation measure value is directly input the tool offset number (TSB) in the function B

[Modification authority] : Equipment management

 \llbracket Value Range \rrbracket : 0 \sim 99

Set the tool offset number when the tool compensation value measure value is directly input to the function B (When the workpiece coordinate system offset value is set).

5021	In the manual tool measure, the memory movement interpolation
	cycle number before touching the detection sensor

[Modification authority] : Equipment management

[Value Range]: 0∼8

Set the memorized movement interpolation cycle number for touching the inspection sensor, it is regarded as 8 when sets to 0.

5043

User the 1st offset axis number (YNSA1)

[Modification authority] : System

 $\llbracket Validate method
floor$: After power-on

『Value Range』: 0~6

[Default Setting]: 0

Set the axis number for compensating the tool offset value of the 1st offset axis, regardless of the 0.

5044

User the 2nd offset axis number (YNSA2)

[Modification authority] : System

 $\llbracket Validate method
floor$: After power-on

[Value Range]: 0~6

[Default Setting]: 0

黛௺州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Set the axis number for compensating the tool offset value of the 2nd offset axis, regardless of the 0.

User the 3rd offset axis number (YNSA3)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{System}$

[Validate method] : After power-on

[Value Range]: 0∼6

[Default Setting]: 0

Set the axis number for compensating the tool offset value of the 3rd offset axis, regardless of the 0.

5046		User the 4 th offset axis number (YNSA)	
『Modification authority』: System			

[Validate method]: After power-on

[Value Range]: 0~6

[Default Setting]: 0

Set the axis number for compensating the tool offset value of the 4th offset axis, regardless of the 0.

Appendix 1.15 Parameter of Canned Cycle

The setting unit of canned cycle parameter is shown as follows:

	IS-B	IS-C	UNITS
Input in metric system	0.001	0.0001	mm
Input in inch system	0.0001	0.00001	inch

Appendix 1.15.1 Parameter of Canned Cycle

[Modification authority] : Equipment management

I Default Setting I:0000 0000

#2 RTR In the G83 and G87

- 0: Specify the high-speed peck drilling cycle
- 1: Specify peck drilling cycle

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

		#7	#6	#5	#4	#3	#2	#1	#0
5102								MRC	
[Modificat	ion au	uthority	:Equipme	nt manag	gement				
I Default S	Setting	J]:0000	0000						
#1 MRC	The r	non-mono	otonic tar	get shape	e is defin	ed in mu	lti-cycle c	ommand	(G71 or (
non-monot	onic 2	Z axis is i	n G73 cyc	cle and th	e run-out	t value is	in Z axis	or the Fir	ishing al
axis is non-	-mon	otonic							
0: Not a	larm								
1: Alarm	I								
		#7	#6	#5	#4	#3	#2	#1	#0
5104							FCK		
[Modificat	ion au	uthority	:Equipme	nt manag	gement				
『Default S	Setting	J]:0000(0100						
#2 FCK	In cor	nbined ca	anned cy	cles (G71	, G72 and	d G73), th	ne proces	sing appe	earance is
0: Not	check	ed							
1: Che	cked								
		#7	#6	#5	#4	#3	#2	#1	#0
5105							RF2		
[Modificat	ion au	uthority	Equipme	ent mana	gement				•
『Default S	Setting	j <u>]</u> : 00	00 0100						
#2 RF2	In the	e type II o	f the can	ned cycl	e G71, w	hether p	erform th	e rough-	machini
0: YE	S								
1: NO)								
5110		M code	locking	C axis in	the can	ned cycl	e of drilli	ng holes	(CMD)
[Modificat	ion au	uthority	:Equipme	nt manag	gement				
『Value Ra	nge』	: 3~99							
I Default S	Setting	J]:35							
Set M co	de, w	hich can l	ock C axi	s, during	the cann	ed cycle	of drilling	holes.	
5114		The r	eturn val	ue in hig	h-speed	peck dri	lling cycl	e (HPDC	CRD)
[Modificat	ion au	uthority	: Equipme	ent mana	gement				
『Value Ra	nge』	. 0~९	99 999 99	9×(syst	em limit i	ncrease)			

『Default Setting』: 1000

The return value in G83, G87 high-speed peck drilling cycle is set by the parameter.

511	5
-----	---

The clearance value of peck drilling cycle (PDCRD)

[Modification authority] : Equipment management

[Value Range]: $0 \sim 99 \ 999 \ 999 \times (system limit increase)$

[Default Setting]: 1000

The clearance value of G83, G87 peck drilling cycle is set by the parameter.

Appendix 1.15.2 Parameter of Thread Cutting Cycle

5130

Chamfering value of the thread cutting cycle (G76, G92) (THD)

 $[\![Modification authority]\!]: Equipment management$

[Value Range] : $0 \sim 99 \times (0.1 \text{ screw pitch})$

[Default Setting]: 0

The parameter sets the beveling value of G76 and G92 thread cutting cycle.

5131 Chamfering angle in threading cycle(G92, G76) (CA	Г)
--	----

[Modification authority] :Equipment management

 $\llbracket Value \ range \rrbracket :0{\sim}89$

[Default]:0

The chamfering angle in threading cycle (G76) of the multiple repetitive canned cycle and the thread cutting cycle (G92) of single canned cycle are set by the parameter. When the parameter is set to 0, a value of 45 degree is determined.

Appendix 1.15.3 Parameter of Thread Cutting Cycle

5132

Cutting value of the combined canned cycle G71 and G72 (THC)

[Modification authority] :Equipment management

『Value Range』: 1∼99 999 999

[Default Setting]: 1000

Set the cutting value of G71 and G72 combined canned cycle.

5133

Tool retraction amount of G71 and G72 combined canned cycle (MCE)

 $[Modification \ authority] \ : Equipment \ management$

 \llbracket Value Range rbracket : 0 \sim 99 999 999

[Default Setting]: 0

Set the run-out value of G71 and G72 combined canned cycle.

Tool retraction amount of G73 combined canned cycle along X axis direction (G73XE)

5136

Tool retraction amount of G73 combined canned cycle along Z axis direction (G73ZE)

[Modification authority] :Equipment management

『Value Range』: -99 999 999∼99 999 999

[Default Setting]: 0

Set the run-out value of G73 combined canned cycle along with X and Z axes direction

Partition times of G73 combined canned cycle (G73DC)

[Modification authority] :Equipment management

[Default Setting]: 1

 $\llbracket Value Range \rrbracket : 1{\sim}999$

Set the partition times of G73 combined canned cycle.

5139

Tool retraction amount of G74 and G75 combined canned cycles (G74G75R)

[Modification authority] :Equipment management

 \llbracket Value Range rbracket : 0 \sim 99 999 999

[Default Setting]: 1000

Set the reversal value of G74 and G75 combined canned cycle.

5140

Cut-in amount of G76 compound canned cycle (G76MID)

[Modification authority] :Equipment management

 \llbracket Value Range rbracket : 0 \sim 99 999 999

[Default Setting]: 0

Set the minimum cutting value of G76 combined canned cycle.

5141

Finishing allowance of G76 combined canned cycle (G76FA)

[Modification authority] :Equipment management

[Value Range] : 1∼99 999 999

[Default Setting]: 500

Set the finishing allowance of G76 combined canned cycle.

5142

Finishing cycle times of G76 combined canned cycle (G76FC)

[Modification authority] :Equipment management

[Value Range] : 1~99

[Default Setting]: 1

Set the finishing cycle times of G76 combined canned cycle.

5143

Tool nose angle of G76 combined canned cycle (G76TNA)

[Modification authority] :Equipment management

 \llbracket Value Range rbracket : 0 \sim 99 (deg)

[Default Setting]: 60

Set the tool nose angle of G76 combined canned cycle.

Override value for retraction in boring cycles (G85, G89) (BCRDOV)

[Modification authority] :Equipment management

[Value Range]: 0~2000

[Default Setting]: 200

Set the velocity override value (%) of the retraction operation in boring cycle, it is separately enabled to the feedrate. When this speed sets to 0, it equals to the 200% speed override.

Appendix 1.16 Parameter of Rigid Tapping

	#7	#6	#5	#4	#3	#2	#1	#0
5200	SRS	FHD	РСР	DOV		CRG		G84

[Modification authority] :Equipment management

『Default Setting』: 0000 0000

#0 G84 Method of commanding the rigid tapping

0: M code commands the rigid tapping before command G84/G88 (refer to parameter NO.5210).

1: M code doesn't command the rigid tapping. G84/G88 is taken as G code of the rigid tapping,

and the common tapping is not used.

#2 CRG After the command of canceling the rigid tapping method, rigid tapping:

0: After the rigid tapping signal RGTAP changes to 0, the method is canceled.

1: Before the rigid tapping signal RGTAP changes to 0, the method is canceled.

#4 DOV Override during the rigid tapping run-out, in the tapping rigid, the override for drawing

0: Invalid

1: Valid, override value is set by parameter 5211

#5 PCP When address Q is commanded in tapping cycle/rigid tapping

- 0: Used as a high-speed peck tapping cycle
- 1: Used as a peck tapping cycle

#6 FHD Feed pause and single block running in rigid tapping is:

0: Forbidden

1: Allowed

#7 SRS To select a spindle used for rigid tapping in multi-spindle control:

0:The spindle selection signals SWS1 \sim SWS3 are used

1:The rigid tapping spindle selection signals RGTSP1~RGTSP3

	#7	#6	#5	#4	#3	#2	#1	#0
5201				OV3	ονυ	TDR		

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#2 TDR Cutting time constant in rigid tapping

0: Uses a same parameter NO.5261 during cutting and extraction

1: Not use a same parameter during cutting and extraction, parameter NO.5261 for cutting, parameter NO.5271 for extraction

#3 OVU The increment unit of the override parameter (№5211) is

- 0: 1%
- 1: 10%

#4 OV3 The spindle speed for tool extraction is specified by the program (address J). The override during the tool extraction is

- 0: Invalid
- 1: Valid

	#7	#6	#5	#4	#3	#2	#1	#0
5202		OVE						

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

#6 OVE The command range based on the extraction override command (address J) specified by the program during rigid tapping

- 0: 100%~200
- 1: 100%~2000%

Tel: +27 11 626 2720, design@efamatic.com chine tools 黛г≃州数控 GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation] #7 #6 #5 #4 #3 #2 #1 #0 5203 **OVS** [Modification authority] : Equipment management [Default Setting]: 0000 0000 #4 OVS In rigid tapping, override by the feedrate override signal and invalidation of override by the override cancel signal is 0: Disabled 1: Enabled Note1: When the feedrate override is set as valid, the extraction override is invalid. Note2: The spindle speed override is fixed to 100%, irrelevant with the parameter. #7 #6 #5 #4 #3 #2 #1 #0 5209 RTX [Modification authority] : Equipment management 0000 0000 [Default Setting]: **#0 RTX** In rigid tapping, the drilling axis is 0: Selected by the plane 1: Fixed as Z axis by G84, X axis by G88 5210 M code commanding the rigid tapping (RTMC) Modification authority : Equipment management 【Value Range』: 0~255 [Default Setting]: 0 M code is set to specify the rigid tapping method. When it is set as 0, CNC takes it as M29. Override of extraction during rigid tapping (RTEOV) 5211 [Modification authority] :Equipment management [Value Range]: 0~200 [Value Unit]: 1% or 10% [Default Setting]: 100

The override value of extraction during rigid tapping.

Note 1: When parameter DOV(No.5200#4) is 1, the override value is valid... Note 2: When parameter OVU (No.5201#3) is 1, the unit of the setting data is 10%, and the override can be applied to the extraction of 2000%.

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

5213

Return or clearance in peck tapping cycle (PRTRD)

[Modification authority] : Equipment management

[Value Range]: 0~99999999

[Value Unit]:

SETTING UNITS	IS-B	IS-C	UNITS
linear axis (Input in	0.001	0.0001	mm
metric system)			
linear axis (Input in	0.0001	0.00001	Inch
inch system)			

[Default Setting]: 0

The return in high-speed peck tapping cycle or clearance in peck tapping cycle is set by the parameter.

5241

Maximum spindle speed when rigid tapping (RTMS)

[Modification authority] :Equipment management

 $\llbracket Value Range
rbracket : 0 \sim 9999$

[Default Setting] : 1000

Set the spindle maximum speed in rigid tapping.

5261

Time constant of linear acceleration/deceleration when rigid tapping (RTLT)

 $[\![Modification authority]\!] : Equipment management$

 $\llbracket Value Range \rrbracket: 0{\sim}4000 ms$

[Default Setting] :100

Time constant of linear acceleration or deceleration for the spindle for the rigid tapping.

Linear acceleration/deceleration time constant when rigid tapping retraction (RTET)

[Modification authority] :Equipment management

 $\llbracket Value Range \rrbracket: 0{\sim}4000ms$

[Default Setting]: 100

Set the time constant of linear acceleration or deceleration of the spindle and the tapping axis during the rigid tapping run-out.

Note: The parameter is valid only when parameter TDR (NO.5201 BIT2) is set as 1.

Actually, the tapping axis lags behind the compensation cycle number (ZBK) sampled by spindle encoder in G84/G88

[Modification authority] : Equipment management

[Value Range]: 0~10

[Default Setting]: 6

Set in the G84/G88 common tapping (non-rigid tapping), the tapping axis lags behind the compensation cycle number sampled by spindle encoder. Generally, it is better set it to 4~8.

Appendix 1.17 Parameter of Polar coordinate interpolation

	#7	#6	#5	#4	#3	#2	#1	#0
5450							AFC	

[Modification authority] :Equipment management

[Default Setting]: 0000 0000

#0 AFC Whether use the auto override and the auto speed in the polar coordinate

interpolation mode.

0: Not use

1: Use

Note: In the polar coordinate interpolation mode, the more closely the tool is near to the work piece center, the bigger the speed vector of the rotary axis is. If the center part exceeds the maximum cutting speed (parameter NO.5462), the servo (NO.411) alarms. Auto feedrate override and auto feedrate limit function auto controls the feedrate, then, the speed vector of the rotary axis doesn't exceed the maximum cutting feedrate.

Specify the polar coordinate interpolation axis (linear axis) (LAI)

5461

Specify the polar coordinate interpolation axis (rotary axis) (RAI)

[Modification authority] :Machine

 \llbracket Value Range \rrbracket : 1 \sim quantity of the control axes

[Default Setting]: NO.5460 is 1; NO.5461 is 5

Set the control axis numbers of the linear axis and the rotary axis for polar coordinate interpolation

Maximum cutting feedrate of the polar coordinate interpolation (MFI)

[Modification authority] :Machine

[Default Setting]: 8000

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

	IS-B	IS-C	UNITS
Machine in metric system	0, 6~24 000	0, 6~10 000	mm/min
Machine in inch system	0, 6~9 600	0, 6~4 800	inch/min

Set the valid maximum feedrate of the polar coordinate interpolation. If the commanded speed is greater than the value, the speed is limited by the maximum one. When the parameter is set as 0, the speed in the polar coordinate interpolation is limited by the maximum cutting feedrate (parameter NO.1422) value.

[Modification authority] :Equipment management

 \llbracket Value Range \rrbracket : 0 \sim 100 (%)

[Default Setting]: 0

When the polar coordinate interpolation is set, the percentages of the auto override are allowed to limit the cutting feedrate of the rotary axis.

The allowable speed of the rotary axis = Maximum cutting feedrate X override percentage

In polar coordinate interpolation, the more closely the tool is near to the work piece center, the bigger the speed vector of the rotary axis is. When it exceeds the allowable speed, the feedrate automatically multiplies by the override value calculated through the following formula:

Override = Allowable speed of the rotary axis/the speed vector of the rotary axis X 100% If the revolving speed after timing the override still exceeds the allowable speed, the feedrate is limited in the allowable maximum cutting feedrate (auto speed limit function).

Note: When the parameter value is set as 0, it is taken as 90%; To limit the auto speed override and the auto speed, the parameter AEC (NO 5450#1) i

To limit the auto speed override and the auto speed, the parameter AFC (NO.5450#1) is set as 1.

Appendix 1.18 Parameter of User Macro Program

		#7	#6	#5	#4	#3	#2	#1	#0	
6000				SBM					G67	

[Modification authority] :Equipment management

[Default Setting]: 0000 0000

#0 G67 Macro program mode calling (G66) mode is not set, but mode calling command (G67) is

canceled.

- 0: P/S alarms (NO.122)
- 1: Ignore G67

#5 SBM Whether use the single block to stop in the user macro program

- 0: Not use
- 1: Use

	-	#7	#6	#5	#4	#3	#2	#1	#0
6001		CLV	CCV						

[Modification authority] :Equipment management

[Default Setting]: 0100 0000

#6 CCV After reset, the user macro public variables 100~199 are:

- 0: Cleared as null
- 1: Not cleared

Note: In MDI mode, the macro public variables are not cleared after reset.

#7 CLV After resetting, the user macro program part vector 1 \sim 33 is

- 0: Cleared as null
- 1: Not cleared

	#7	#6	#5	#4	#3	#2	#1	#0
6004							MFZ	NAT

[Modification authority] :Equipment management

[Default Setting]: 0000 0000

#0 NAT The function command ATAN of the user macro program

- 0: Result of ATAN is $0\sim360.0$ Result of ASIN is $270.0\sim0\sim90.0$
- 1: Result of ATAN is -180.0 \sim 0 \sim 180.0n Result of ASIN is -90 \sim 0 \sim 90

#1 MFZ The angles of STN, COS or TAN, which are operation commands of the user macro program, are 1.0×10^{-8} or less, or the operation result is not exact 0

- 0: Underflow process
- 1: Reduction to 0

	#7	#6	#5	#4	#3	#2	#1	#0
6008		GMP	ТМР					F0C

[Modification authority] : Equipment management

[Default Setting]: 0000 0000

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

#0 F0C The macro variable operation result

- 0: The alarm occurs when the data range exceeds ±1E308
- 1: The alarm occurs when the data range exceeds $\pm 1E47$

#5 TMP Whether allow the T code to call macro program

- 0: NO
- 1: YES

#6 GMP Whether allow M code calling the macro

- 0: No
- 1: Yes

The beginning number of the variable to be protected in the common variables (#500~#999) (MPH)

[Modification authority] : Equipment management

0

『Value Range』: 500∼999

『Default Setting』:

The beginning number of the variable in the common variables (#500~#999) is protected

The end number of the variable to be protected in the common variables (#500~#999) (MPT)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

¶Value Range』: 500∼999

[Default Setting]: 0

The end number of the variable in the common variables (#500~#999) is protected

<u>像</u>Г[⊶]州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

[Value Range]: 3~99999999

0

『Default Setting 』:

M code for calling Macro PROG. NO.9020~9029 is set by the parameter.

Append

Appendix 1.19 Parameter of the Skip Function

62 [M	200		SKF								
ſМ			0						SK0		
	odificati	on auth	hority]:	Machine							
『D€	efault So	etting』	: 0000 (0000							
#1	SK0 S	et the	valid sta	te of the	skip sign	al					
0: valid when the input signal is "1"											
	1: valid v	when th	ne input s	ignal is "0	"						
#7	SKF [ry run	and ove	erride for	G31 jump	oing com	mand are):			
	0: disal	oled									
	1: enabl	ed									
		_	#7	#6	#5	#4	#3	#2	#1	#0	
	6210			MDC							
ΓM	odificati	on autł	hority』:	Equipme	nt manag	ement					
『D€	efault So	etting』	: 0000 0	0000							
#6	MDC	the me	asured a	automatic	tool com	pensatio	on value i	S			
	0: adde	d to th	e current	t offset va	lue						
	1: subtr	acted	from the	current o	ffset value	Ð					
		ו ר	#7	#6	#5	#4	#3	#2	#1	#0	
(6240		IGA							AE0	
¶ M	odificati	on auth	nority』:	Machine							
¶Va	alidate n	nethod]: Afte	er power-	on						
[De	efault So	etting	: 0000 (0000							
#0	AE0 A	utoma	atic tool	compens	ation sigr	nal (X3.6)), XAE2 ()	(3.7) indic	cates:		
	0: the n	neasuri	ing posit	ion is rea	ched whe	n it is 1					
					abadwha	nitia 1					
	1: the n	neasuri	ing posit	ion is rea							

1: not used

6241

Feedrate during automatic compensation (for XAE1 signal)(ATOF1)

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

6242

Feedrate during automatic compensation (for XAE2 signal)(ATOF2)

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Machine}$

[Default Setting] : 1000

『Value setting』:

SETTIN	VALUE	VALID F		
UNIT	UNIT	UNIT IS-B		DEFAULI
Metric	1mm/min	6~15000	6~12000	1000
Inch 0.1inch/min		6~6000	6~4800	1000

These two parameters set the feedrate during automatic tool compensation.

Note: When the setting value of parameter No. 6242 is valid, the setting value of parameter No. 6241 is valid too.

6251

The γ value of X axis during automatic tool compensation (ATOR1)

6252 The γ value of Z axis during automatic tool compensation (ATOR2)

[Modification authority]: Equipment management

[Value range]: 1~99999999

『Default Setting』: 1000

These two parameters set the $\boldsymbol{\gamma}$ value in tool compensation function in sequence.

Note: It is always set based upon the radius value regardless of the diameter or radius specification

6254

The ε value of X axis during automatic tool compensation (ATOE1)

6255

The ε value of Z axis during automatic tool compensation (ATOE2)

[Modification authority] : Equipment management

[Value range]: 1~99999999

SETTING UNIT	IS-B	IS-C	unit
Linear axis (metric input)	0.001	0.0001	mm
Linear axis (inch input)	0.0001	0.00001	inch
Rotary axis	0.001	0.0001	deg

These two parameters set the ϵ value in tool compensation function in sequence.

Note: The value is set in radius no matter diameter or radius programming is specified

Appendix 1.20 MPG Retraction Parameter

		#7	#6	#5	#4	#3	#2	#1	#0
6400			MGO						RPO
[Modificat	ion au	thority]:	Equipme	ent mana	gement				
『Default S	etting]: 00	00 0000						
#0 RPO	In the	e retracti	on functi	ion, the f	eedrate a	at the rap	oid trave	rse rate:	
0: Cla	mped	at the 10	% of its e	quivalent	t override				
1: Cla	mped	at the 10	0% of its	equivale	nt overrid	е			
#6 MCO	In the	e retracti	ion funct	ion, perf	orm the	relative C	G code w	ith meas	urement:
0: MP	G puls	se enable	ed						
1: MP	G puls	se disable	ed, it alwa	ays perfor	ms below	v the 100°	% overrid	е	
		#7	#6	#5	#4	#3	#2	#1	#0
6401									CRH
[Modificat	ion au	thority]:	Equipme	ent mana	gement				
『Default S	etting]: 00	00 0000						
#0 CRH	Whet	her forbi	id the MF	PG retrac	tion in th	ne hand I	MPG retra	action m	ethod:
0: YES	S								
1: NO									
6405		Clamp	the over	ride valu	e (MLF)	of the MF	PG retrac	tion fun	ction at
0405				the	e rapid tr	averse ra	ate		
[Modificat	ion au	thority	Equipme	ent manag	gement				
	nge』∶	0~100)						

[Default Setting]: 0

Set the override value for clamping at the MPG retraction function at the rapid traverse rate, when the 0 is set, this function is disabled, and the RPO(No.6400#0) is enabled ($0\sim100$).

6410

The movement value of MPG per one pulse (MPM)

[Modification authority] : Equipment management

[Value Range]: 0~100

[Default Setting]: 0

Set the movement value ($0 \sim 100$) of the MPG per one pulse by the override conversion The mechanical movement value when actually rotates the MPG, which can be calculated according to the following method:

[Command speed] × [MPG override] × ([Parameter setting value]/100) ×8/60000 (mm or inch)

For example: The command speed is 30mm/min; the MPG override is 100; the movement value caused by MPG per one pulse in the case of the parameter No.6410 sets to 1, refer to the following formula:

[The movement value per one pulse]=30[mm/min] ×100×(1/100) ×(8/60000)[min]=0.004mm

Appendix 1.21 Parameter of Graphic Display

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#3 DPA Current position display on the graphic display screen

0: Display the actual position including the tool nose radius compensation and tool offset

1: Display the programming position without tool compensation and offset

Appendix 1.22 Parameter of Run Hour and Parts Count Display

	#7	#6	#5	#4	#3	#2	#1	#0
6700							PRT	РСМ

[Modification authority] : Equipment management

『Default Setting』: 0000 0000

#0 PCM M codes counting the total quantity of the processing parts and the quantity of the

processing parts

0: M codes specified by M02 and M30 and parameter NO.6710

1: M codes only specified by parameter NO.6710

#1 PRT During setting, the signal PRTSF (F62.7) of the sufficient quantity of the processing parts is

0: Cut off

1: Not cut off

6710

M codes counting the total quantity of the processing parts and the quantity of the processing parts (MPC)

[Modification authority] : Machine

『Value Range』: 0∼9999

[Default Setting]: 0

The machine program executes M codes set by the parameter, total quantity of the processing parts and quantity of the processing parts plus 1, respectively.

Note:When the setting value is 0, it is invalid (M00 can't count the parts). And it can't be set as 98 and 99, 198, neither.

Quantity of the required parts (RPM)

[Modification authority] : Machine

『Value Range』: 0∼9999

[Default Setting]: 0

When the quantity of the processing parts equals to that of the parts required being processed, the signal PRTSF (F62.7) of the enough quantity of the required parts outputs to PLC. However,

Note: If the quantity is 0, it is regarded as infinitely great, not output to PRTSF.

Appendix 1.23 Parameter for Tool Life Span Administration

	#7	#6	#5	#4	#3	#2	#1	#0
6800			GRC	GPS	SIG	LTM	GS2	GS1

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Validate method] : After power-on

[Default Setting]: 0000 00000

#0 GS1 The registered group numbers and the tool numbers of each 1 group can be changed by setting the parameters GS1, GS2 based upon the Max. group number in the parameter 6813.

#1 GS2 The registered group numbers and the tool numbers of each 1 group can be changed by setting the parameters GS1, GS2 based upon the Max. group number in the parameter 6813.

The relationships between GS1, GS2 and tool numbers are shown below:

GS2	GS1	Group Number	Tool Number
0	0	The 1/8 from the 1 to the Max. group number (No.6813)	1~16
0	1	The 1/4 from the 1 to the Max. group number (No.6813)	1~8

1	0	The 1/2 from the 1 to the Max. group number (No.6813)	1~4
1	1	The Max. group number (No.6813)	1~2

#2 LTM The specification of tool life span count type

0: Specify based upon the times

1: Specify based upon time

#3 SIG In the tool skip based on the signal, whether select the signal input group number

by the tool group number

- 0: Do not input
- 1: Input

#4 GRS When inputting the tool-change resetting signal TLRST:

- 0: The clearing group is specified by the GRC of parameter 6800#5
- 1: Clear the registered executing data of the overall groups

#5 GRC When inputting the tool-change resetting signal TLRST, the specified group:

- 0: Automatically inspect the group used up of the life span by CNC
- 1: Select the signal specification by external tool group number

	#7	#6	#5	#4	#3	#2	#1	#0
6801						LVF	TSM	

[Factory type]: Equipment

[Modification authority] : Equipment management

[Default Setting]: 0000 00000

#1 TSM In the tool life span administration function, the life span count exists in the case of multi-offset command

- 0: The counting is performed based upon the each same tool number
- 1: The counting is performed based upon the each cutter

#2 LVF Use the time count life span value in the tool life span administration function, the tool life span count override signal *TLVO \sim *TLV9<G049.0 \sim G050.1> places at:

- 0: Disabled
- 1: Enabled

	#7	#6	#5	#4	#3	#2	#1	#0
6802	RMT							Т99

[Default Setting]: 0000 00000

[Modification authority] : Equipment management

[Validate method]: Immediately

#0 T99 When the tool group of the life span is used up, perform the M99 in the main program:

0: Do not output the tool-change signal

1: Output the tool-change signal, and then enter to the auto operation stop state.

#7 RMT Tool life span predicted signal TLCHB

0: The residual value of life-span (life-span value — life-span counter), \leq the remainder value of the ON life-span when resetting the counting value > It is OFF when resetting the counting value

1: The surplus of life-span = ON during resetting counting value, the residual value of life-span ≠ OFF during the resetting counting value

	#7	#6	#5	#4	#3	#2	#1	#0	
6804		LFI							

『Default Setting』: 0000 00000

 $\llbracket \mathsf{Modification} \ authority \rrbracket : \mathsf{Equipment} \ management$

[Validate method]: Immediately

#6 LFI The selected tool life-span counting in the tool life administration

0: Enabled

1: Count the disabled signal LFCIV (G48.2) by tool life-span, the shifting is performed between enabled or disabled.

	#7	#6	#5	#4	#3	#2	#1	#0
6805							FGL	

[Default Setting]: 0000 00000

[Modification authority] : Equipment management

[Validate method]: Immediately

#1 FGL life-span counting type is registered based upon the life data of G10 in the case of the specified time

0: Unit by 1 minute

1: Unit by 0.1 second

6810

Tool life-span administration ignore number (TLC)

[Default Setting]: 0

[Modification authority] : Equipment management

[Value Range]: 0∼9999 9999

[Validate method]: Immediately

When the figure exceeds the set value by using the T code, some value deducted from the set

value based upon the T code numerical value becomes the tool group number of the tool life-span administration.

6811

The M code is used by tool life-span counting restart (MRN)

[Default Setting]: 0

[Modification authority] : Equipment management

[Value Range]: $0 \sim 127$

[Validate method]: Immediately

In this case, the life-span existence is set by times, the tool group when the tool life-span counting restarting specifies the M code is used up.

The tool-change signal (TLCH) may also be output even if only one signal; when it is set to 0, the parameter will then be ignored.

[Default Setting]: 0

6813

[Modification authority] : Equipment management

[Value Range]: 0, 8, 16, 32, 64, 128

[Validate method] : After power-on

Set the used top group number of each path, after this parameter is set, the power should be temporarily turned off.

. .

6844

The residual span using times of tool (TLP)

[Default Setting]: 0

[Modification authority] : Equipment management

[Value Range]: 0~65535

[Validate method]: Immediately

In the case of the tool life-span is specified, cutter output span reaches to the tool residual span of the predictive signal (Using times).

6845 The remainder span using time of tool (TLR)
--

[Default Setting]: 0

[Modification authority] : Equipment management

[Value Range]: 0~4300

[Validate method]: Immediately

In the case of the tool life-span is specified, cutter output span reaches to the tool residual span

of the predictive signal (Using time).

Appendix 1.24 Parameter of MPG Feed

[Modification authority] : Machine

[Default Setting]: 0000 0000

#0 JHD MPG feeding in JOG mode or increment feeding in MPG feed mode

- 0: Invalid
- 1: Valid

	JH	D=0	JHD=1		
	JOG MODE	MPG MODE	JOG MODE	MPG MODE	
JOG feeding	0	×	0	×	
MPG feeding	×	0	0	0	
Increment feeding	×	×	×	0	

#4 HPF When MPG feedrate exceeds the manual rapid movement speed

- 0: The speed is limited in the manual rapid movement speed, the pulse exceeding the manual rapid movement part is ignored (The scale of MPG does not comply with the movement amount)
- 1: The speed is limited in the manual rapid movement speed; the exceeding part isn't ignored but saved in CNC. (Although MPG is stopped, the machine still moves the pulse value saved in CNC and then stops.)

[Modification authority]: Machine

Default setting]:0000 0000

#2 HNT Movement amount override of the incremental feed/MPG feed is set to the one that is selected by the MPG feed movement selection signal

- 0: 1
- 1: 10 times

7110

Number of MPG (NMP)

[Modification authority]: Machine

『Value Range』: 1~2

[Default Setting]: 1

Set the quantity of MPG.

MPG feed override M(MFM)

[Modification authority]: Machine

 $\llbracket Value Range \rrbracket : 1{\sim}127$

[Default Setting]: 100

Set the override when MPG feeding movement value selection signals MP1=0, MP2=1.

7114

MPG feed override N(MFN)

[Modification authority]: Machine

 $\llbracket Value Range
rbracket : 1{\sim}1000$

[Default Setting]: 1000

Set MPG feeding override when MPG feeding movement value selecting signals MP1=1, MP2=1.

MOVEME	NT VALUE	
SELECTIN	IG SIGNAL	
MP2	MP1	FEEDING)
0	0	Minimum setting unit * 1
0	1	Minimum setting unit * 10
1	0	Minimum setting unit * M
1	1	Minimum setting unit * N

7117

Allowable pulse cumulative value in MPG feed (APM)

[Modification authority]: Machine

 \llbracket Value Range \rrbracket : 0 \sim 1000

[Default Setting]: 1000

When MPG feeding instance exceeds the rapid movement speed, the pulse exceeding the rapid movement is not canceled but saved. The parameter sets the allowable value of the memory capacity.

Note: When overrides, such as X100 or more than it, are selected, MPG rapidly turns round. MPG feeding is more than the rapid movement speed; the speed is limited by the rapid movement speed. The pulse exceeding the rapid movement speed is ignored; therefore, the scale value of MPG doesn't comply with the actual movement value. Then, If the allowable value is preset in the parameter, the pulse exceeding the rapid movement speed is not canceled, but saved in CNC temporarily (the part exceeding the allowable value is ignored). When MPG revolving speed becomes slower or the revolving stops, the saved pulse changes into the movement command and outputs. Pay attention to it if the allowable value is set too big, even MPG is stopped revolving, CNC won't stop until the remaining pulse is completed.

Appendix 1.25 Parameters of Program Restart

	#7	#6	#5	#4	#3	#2	#1	#0
7300	MOU	MOA						

[Modification authority]: Machine

『Default Setting』: 0000 0000

#6 MOA In program restart operation, before movement to a machining restart point 0:The last M, S, T and B codes are output

1:All M codes and the last S, T and B codes are output

#7 MOU In program restart operation, before movement to a machining restart point after restart block search

- 0: The M, S, T and B codes are NOT output
- 1: The M, S, T and B codes are output

	#7	#6	#5	#4	#3	#2	#1	#0
7301								ROF

[Modification authority]: Machine

『Default Setting』: 0000 0000

#0 ROF In the restart coordinate display on the program restart screen, whether display the various tool compensation values

- 0: Display the tool compensation and offset
- 1: Set by DAL, bit 6 of parameter No.3104 or DAC, bit 7 of parameter No.3104

<u>惫г[⊶]州数控</u>

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

7310

The axis sequence by dry run after a program is restarted (ROAX)

 $[\![Modification authority]\!]: Machine$

<code>[Value Range]</code> : 1 \sim quantity of the control axes

[Default Setting]: 1

The axis sequence when the machine moves to the restart point by dry run and is specified by the dedicated axis after a program is restarted

Appendix 1.26 Polygon Machining Parameter

	_	#7	#6	#5	#4	#3	#2	#1	#0
7603			PQS		PSM	PLR			

[Modification authority]: Machine

『Default Setting』: 0000 0000

#3 PLR The tool rotation axis with each movement value of the polygon machining

- 0: Round off by the setting value of the parameter 7620
- 1: Round off based upon 360

#4 PSM The workpiece rotation axis working mode of the polygon machining

- 0: Speed mode
- 1: Position mode

#6 PQS The PQ value of the polygon machining is:

- 0: The rotation ratio between the tool rotation axis and workpiece rotation axis
- 1: The ratio value between the polygon number and tool number

7610	The controllable axis number (PCA) for using the tool rotation axis
7010	of the polygon machining

[Modification authority]: Machine

 $\llbracket Value Range \rrbracket: 0 {\sim} quantity of the control axes$

[Default Setting]: 0

Set the controllable axis number of the tool rotation axis for using the polygon machining, when it is set to 0, which means that this function does not work.

The movement amount (PEM) per each rotation for using tool rotation axis of polygon machining

[Modification authority]: Machine

[Value Range] : 0∼3600000

[Default Setting]: 0

Set the movement amount per each cycle of the tool rotation axis

7621

The upper-limit speed (PSM) for using the tool rotation axis of the polygon machining

[Modification authority]: Machine

 $\llbracket Value Range
rbracket : 0 \sim 999999999$

[Default Setting]: 0

Set the upper-limit speed of the tool rotation axis

Appendix 1.27 Parameter of PLC Axis Control

	#7	#6	#5	#4	#3	#2	#1	#0
8001		AUX	NCC		RDE	OVE		MLE

[Modification authority]: Machine

『Default Setting』: 0000 0000

#0 MLE Whether the locking machine signal MLK of PLC control axis is valid

0: Valid

1: Invalid

#2 OVE Signals relative with the dry run and the override controlled by PLC axis

- 0: Same signals controlled by CNC
- 1: Signals especially used in PLC

#3 RDE In PLC axes control, whether the dry run is valid for the rapid feeding commands

0: Invalid

1: Valid

#5 NCC For PLC control axes (the control axes select the axes chosen by the signal), command the program to command the movement

0: According to the axis control command, PLC controls the axis, P/S (No.139) alarms; the axis is not controlled, CNC command is valid.

1: P/S (No.139) alarms.

#6 AUX The number of bytes for the code of an auxiliary function to be output is

- 0: One
- 1: Two

	#7	#6	#5	#4	#3	#2	#1	#0
8002	FR2	FR1	PF2	PF1	F10		DWE	RPD

[Modification authority]: Machine

[Default Setting]: 0000 0000

#0 RPD The rapid movement speed of PLC control axis

- 0: Feedrate set by parameter No.1420
- 1: In axis control command, feedrate set by feedrate Value

#1 DWE When use the increment system IS-C, the minimum time specified by the pause command during PLC axis control

- 0: 1ms
- 1: 0.1ms

#3 F10 In PLC axis control, the minimum increment units of the cutting feedrate (per min)

F10	Input in metric system	Input in inch system
0	1mm/min	0.01inch/min
1	10mm/min	0.1inch/min

#4, #5 PR1, PR2 In PLC axis control, the least increment unit of cutting feed

PF2	PF1	Speed		
0	0	1/1		
0	1	1/10		
1	0	1/100		
1	1	1/1000		

#6, #7 FR1, FR2 The feedrate units of per revolution feeding during PLC axis control

FR2	FR1	Input in metric system	Input in inch system		
0	0	0.0001mm/rov	0.000001inch/rev		
1	1	0.000 mm//ev			
0	1	0.001mm/rev	0.00001inch/rev		
1	0	0.01mm/rev	0.0001inch/rev		

	#7	#6	#5	#4	#3	#2	#1	#0
8004		NCI	DSL			JFM		

[Modification authority]: Machine

[Default Setting]: 0000 0000

#2 JFM Feedrate units of continuous feeding (06h) of PLC control axis

INCREMENT	JFM	INPUT IN METRIC	INPUT IN INCH	ROTARY
SYSTEM		SYSTEM	SYSTEM	AXIS
IS-B	0	1mm/min	0.01inch/min	1deg/min

	1	200mm/min	2.00inch/min	200deg/min
	0	0.1mm/min	0.001inch/min	0.1deg/min
IS-C	1	20mm/min	0.200inch/min	20deg/min

#5 2DSL When selecting the axes controlled by PLC is forbidden, if the axes are tried to

exchange

- 0: Failed and P/S No.139 alarms
- 1: Axes, without commanding the channel, are executed exchanging

#6 NCI During decelerating the axes controlled by PLC, in-position check is

- 0: Executed
- 1: Not executed

	#7	#6	#5	#4	#3	#2	#1	#0
8005							CDI	

 $\llbracket \mathsf{Modification} \ authority \rrbracket \colon \ \mathsf{Machine}$

『Default Setting』: 0000 0000

#1 CDI When PLC control axis selects the diameter programming, under PLC axis control0: Radius programming specifies the movement distance

1: The diameter programming specifies the movement distance

#2 R10 When the RPD parameter(No.8002#0) is set to "1", the unit for specifying a rapid traverse

rate for the PLC axis is

- 0: ×1
- 1: ×10

	#7	#6	#5	#4	#3	#2	#1	#0
8006	EAL			EFD				

[Modification authority]: Machine

『Default Setting』: 0000 0000

#4 EFD In axis control by PLC, the unit for specifying feed cutting for PLC axis is

0: ×1

1: ×100

#7 EAL In axis control by PLC, the function that allows the alarm signal to be reset by a CNC reset operation is

- 0: Not release the alarm of PLC control axis
- 1: Release the alarm of PLC control axis

<u>@</u>,ſ∼州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

8010

Selecting each axis DI/DO group controlled by PLC (EPAS)

[Modification authority]: Machine

[Parameter Type] : Word axis type

 $\llbracket Value Range \rrbracket: 0{\sim}4$

[Default Setting]: 0

Each DI/DO group controlled by each PLC axis, which is shown as the following list:

NUMERICAL	DEMADK
VALUE	REMARK
0	The axis is not controlled by PLC
1	DI/DO in group A is used
2	DI/DO in group B is used
3	DI/DO in group C is used
4	DI/DO in group D is used

8022

Maximum feedrate of feeding/per revolution controlled by PLC axis (EPMF)

[Modification authority]: Machine

[Parameter Type] : Word axis type

[Value Range]:

		VALID VALUE RANGE			
INCREMENT STSTEM	VALUE UNITS	IS-B	IS-C		
Machine in metric system	1mm/min	6~15000	6~12000		
Machine in inch system	0.1inch/min	6~6000	6~6000		
Rotary axis	1deg/min	6~15000	6~12000		

[Default Setting]: 6

Set the maximum feedrate of feeding/per revolution controlled by PLC axis.

	For each PLC control axis, the linear acceleration or deceleration
8028	time constant specified by speed command during JOG feeding
	(EPAT)

[Modification authority]: Machine

 $\llbracket \texttt{Parameter Type}
rbracket$: Word axis type

[Value Range] : 0~3000ms

[Default Setting]: 100

Specify the linear acceleration or deceleration time constant during JOG feeding

Note: If it is set to "0", the system doesn't control the acceleration and deceleration.

8030

Shift of reference position for PLC controlled axes (RPS)

[Modification authority]: Machine

 $\llbracket {\sf Parameter} \; {\sf Type}
rbracket : {\sf Word} \; {\sf axis} \; {\sf type}$

 $\llbracket Value Range \rrbracket: -99999999 \sim 99999999$

[Default Setting]: 0

Set the shift of reference position for PLC controlled axes

Appendix 1.28 Parameter of the Basic Function

8130

Total quantity of the controlled axes (TCA)

[Modification authority]: System

 $\llbracket \mbox{Validate method} \ \rrbracket$: After power-on

 $\llbracket Value Range \rrbracket: 2{\sim}6$

[Default Setting]: 2

Set the total quantity of the axes controlled by CNC system.

		#7	#6	#5	#4	#3	#2	#1	#0	
8131									HPG	
[Modificat	『Modification authority』: Machine									
『Validate r	netho	d]:Aftei	r power-o	n						
『Default S	etting]:0000	0001							
#0 HPG	0 HPG Whether use MPG feeding									
0: Not i	use									
1: Use										
		#7	#6	#5	#4	#3	#2	#1	#0	
8132								YOF	TLF	
[Modificat	ion au	uthority』	Machine							
『Validate r	netho	d]:Aftei	r power-o	n						
『Default S	etting	』:0000	0000							
#0 TLF V	#0 TLF Whether use the tool work life management function									
0: Not i	use									
1: Use										

#1 YOF The Y-axis offset is

<u>@</u>,Г[⊷]州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

- 0: Not used
- 1: Used

	#7	#6	#5	#4	#3	#2	#1	#0
8133						SCS		SSC

[Modification authority]: Machine

 $\llbracket Validate method \rrbracket$: After power-on

[Default Setting]: 0000 0001

#0 SSC Whether use the function of the constant surface speed (G96)control

- 0: Not use
- 1: Use

#2 SCS Whether use CS outline control function

- 0: Not use
- 1: Use

[Modification authority]: Machine

[Validate method] : After power-on

[Default Setting]: 0000 0000

#2 CCR The chamfering/corner R is

- 0: Not use
- 1: Use

	#7	#6	#5	#4	#3	#2	#1	#0
8135	RPTH					NSQ		

[Modification authority]: Machine

[Validate method] : After power-on

[Default Setting]: 0000 0100

#2 CCR The program restarting function is

- 0: Used
- 1: Not used

#7 RPTH Whether use the thread recovery function

- 0: NO
- 1: YES

#7	#6	#5	#4	#3	#2	#1	#0

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 1 Parameters

	_					
8136				NOP		

[Modification authority]: Machine

[Validate method] : After power-on

『Default Setting』: 0000 0000

#3 NOP Whether use the soft machine tool panel

- 0: NO
- 1: YES

Appendix 1.29 Parameter for Slopping Axis Control

	#7	#6	#5	#4	#3	#2	#1	#0
8200						AZR		AAC

 $[\![Modification authority]\!]: Machine$

 $\llbracket \mbox{Validate method} \ \rrbracket$: After power-on

『Default Setting』: 0000 0000

#0 AAC Whether perform the slopping axis control

- 0: NO
- 1: YES

#2 AZR When performing the slopping axis manual reference point return in its axis control

method

- 0: Perpendicular axis is also moved at the same time
- 1: Perpendicular axis does not move

	#7	#6	#5	#4	#3	#2	#1	#0
8209								ARF

[Modification authority]: Machine

 $\llbracket Validate method
rbracket$: After power-on

『Default Setting』: 0000 0000

#0 ARF Move to the reference point from the intermediate pont specified by G28/G30 based upon the slopping axis control:

- 0: The motion of the slopping coordinate system
- 1: The motion of Cartesian coordinate system
- 8210

The slopping angle (INA) in the slopping axis control

[Modification authority]: Machine

 $\llbracket Validate method \rrbracket$: After power-on

[Value Range] : -1800000~1800000

『Default Setting』: 0

This parameter sets the slopping axis angle in its axis control

Setting unit: IS-B 0.001deg; IS-C 0.0001deg.

8211	The slopping axis number (ANS) for performing the slopping axis
	control
8212	The rectangular axis number (ANC) for performing the slopping
	axis control

 $\circleft{Modification authority} \circleft{I: Machine}$

[Validate method] : After power-on

『Value Range』: 0~6

[Default Setting]: 0

This parameter sets the slopping axis number when the slopping axis is controlled. When one of any parameters sets to 0, alternatively, either the same numbers are set or non-control axis number is set, which means that the function is disabled.

Appendix 1.30 Parameter of GSKLink Communication Function

		#7	#6	#5	#4	#3	#2	#1	#0
9000								GCRC	GNET

[Modification authority]: Machine

 $\llbracket Validate method \rrbracket$: After power-on

[Default Setting]: 0

#0 GNET Whether the system GSKLink communication function is enabled

- 0: NO
- 1: YES

#1 GCRC Whether the system GSKLink communication data is performed the verification

- 0: NO
- 1: YES

Appendix 2 Standard PLC Function Configuration

Appendix 2.1 Standard Panel on the Machine Tool

etamatic

machine tools

Appendix 2.1.1 GSK988TA1 Standard Panel on Machine Tool

Fig 2-1 GSK988TA1 Standard layout of operation panel

Note: It is the same size between GSK988TA1-H and GSK988TA1 about the address of Standard Panel

Appendix 2.1.2 GSK988TA Standard Panel on Machine Tool

Fig.2-2 GSK988TA Standard layout of operation panel

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 2 Standard PLC Function Configuration

Fig. 2-3 GSK988TA-H Standard layout of operation panel

Appendix 2.1.4 GSK988TB Standard Panel on the Machine Tool

Fig. 2-4 988TB Standard layout of operation panel

Note: It is the same size between GSK988TB-H and GSK988TB about the address of Standard Panel

Appendix 2.2 Definitions of X and Y Addresses of the Ladder Diagram

I/O of GSK988TA/988TA1/988TB is classified into high speed I/O signal and the common I/O one. The high speed I/O signals are those of CN61 on CNC back cover. The common I/O signal is the extension signals of the remote I/O unit. The function of I/O signal of CNC (except for the signal of the marked fixed address) is defined by the system internal PLC program (the ladder diagram). When GSK988TA/988TA1/988TB turning machine CNC is configurated with the machine, I/O function is set by the machine manufacturer; please refer to the user manual for the machine manufacturer about the details.

In this chapter , please pay attention that the common I/O singals (X and Y addresses) function is mainly for the starndard PLC program of GSK988TA/988TA1/988TB.

Appendix 2 Standard PLC Function Configuration

Appendix 2.2.1 High speed I/O interface

Fig. 2-5 Pins of CN61

Corresponding connector pins	PLC address	Function defined by the standard PLC addresses		Function defined by the standard PLC addresses		Note
CN61.1			0V			
CN61.2	X0.0		Reserved			
CN61.3	X0.1		Reserved			
CN61.4	X0.2	Reserved				
CN61.5	X0.3	Reserved				
CN61.6	X0.4	SKIP G31 skip signal				
CN61.7	X0.5	ESP	Emergency stop input signal			
CN61.8	X0.6	G36	G36 skip signal			
CN61.9	X0.7	G37 G37 skip signal				
CN61.10		0V				

Appendix 2.2.2 Common machine I/O interface

The all-purpose output/input of the GSK988TA/988TA1/988TB is distributed by connecting the I/O unit with the GSKLink. Up to 4 I/O units can be connected by GSKLink, up to 48 input points and 32 output points of each I/O unit, and the address use range is X80~X127 and Y80~Y127 of which the user should configure the system address by herself/himself.

An I/O unit with 48 input points and 32 output points is configured in the standard configuration of the GSK988TA/988TA1/988TB system. The configuration address of standard ladder diagram in the system is X100~X105 and Y100~Y103. The overall I/O introduced in this User Manual, however, if the difference condition occurs, refer to the User Manual offered by machine tool manufacturer. The signal addresses are subject to it.

PLC address	Function defined by standard PLC address		Remark
X100.0	SAGT	Protection door detection signal	
X100.1		Reserved	
X100.2	DIQP	Chuck input signal	
X100.3		The 1 st axis deceleration signal	
X100.4	DITW	Tailstock control signal	

PLC address	s Function defined by standard PLC address		Remark
X100.5		Emergency stop input signal	
X100.6	PRES	Pressure detection signal	
X100.7	T05	Tool position signal 5/ tool post pre-indexing signal (Yantai AK31)/Sensor E (Liuxin Tool Post)	
X101.0	T06	Tool position signal 6/ tool post pre-indexing signal (Yantai AK31)/Sensor F (Liuxin Tool Post)	
X101.1	T07	Tool position signal 7/ tool post overheat signal (Yantai AK31)	
X101.2	T08	Tool position signal 8	
X101.3		Reserved	
X101.4		Reserved	
X101.5	M41I	The 1 st gear stage in-position	
X101.6	M42I	The 2 nd gear stage in-position	
X101.7	T01	Tool position signal 1/T1 (Yantai AK31)/Sensor A (Liuxin Tool Post)	
X102.0	T02	Tool position signal 2/T2 (Yantai AK31)/ Sensor B (Liuxin Tool Post) Sensor A (Liuxin Tool Post)	
X102.1	Т03	Tool position signal 3/T3 (Yantai AK31)/Sensor C (Liuxin Tool Post)	
X102.2	T04	Tool position signal 4/T4 (Yantai AK31)/Sensor D (Liuxin Tool Post)	
X102.3		Reserved	
X102.4		Reserved	
X102.5		Reserved	
X102.6	ТСР	Tool post lock signal Tool post proximity switch signal (Yantai AK31)	
X102.7		Reserved	
X103.0	LMI1+	The 1 st axis + side overtravel signal	
X103.1	LMI2+	The 2 nd axis + side overtravel signal	
X103.2	LMI3+	The 3 rd axis + side overtravel signal	
X103.3	WQPJ	Chuck in-position signal (outer chuck clamping and inner chuck unclamping)	
X103.4	NQPJ	Chuck in-position signal (inner chuck clamping and outer chuck unclamping)	
X103.5		Reserved	
X103.6		Reserved	
X103.7		Reserved	
X104.0	LMI1-	The 1 st axis – direction overtravel signal	
X104.1	LMI2-	The 2 nd axis – direction overtravel signal	
X104.2	LMI3-	The 3 rd axis – direction overtravel signal	

Appendix 2 Standard PLC Function Configuration

PLC address		Function defined by standard PLC address		
X104.3	LMI4+	The 4 th axis + direction overtravel signal		
X104.4	LMI4-	The 4 th axis - direction overtravel signal		
X104.5	LMI5+	The 5 th axis + direction overtravel signal		
X104.6	LMI5-	The 5 th axis - direction overtravel signal		
X104.7		Reserved		
X105.0		Reserved		
X105.1		Reserved		
X105.2		Reserved		
X105.3		Reserved		
X105.4		Reserved		
X105.5		Reserved		
X105.6		Reserved		
X105.7		Reserved		
Y100.0	M08	Cooling output signal		
Y100.1	M32	Lubrication output signal		
Y100.2		the hydraulic station output signal		
Y100.3	M03	Spindle CCW signal		
Y100.4	M04	Spindle CW signal		
Y100.5	M05	Spindle stop signal		
Y100.6	M35	Spindle hold output signal		
Y100.7	SPZD	Spindle braking output signal		
Y101.0	M41	Spindle gear 1 output signal		
Y101.1	M42	Spindle gear 2 output signal		
Y101.2	M43	Spindle gear 3 output signal		
Y101.3	M44	Spindle gear 4 output signal		
V101 4	M12(DO	Outer chuck clamping output /		
101.4	QPJ)	Inner chuck unclamping output signal		
Y101 5	M13(DO	Outer chuck unclamping output /inner chuck clamping		
	QPS)	output signal		
Y101.6	TL+	Tool post forward rotation output signal		
Y101.7	TL-	Tool post reverse rotation output signal		
Y102.0		Tool post motor braking signal (Yantai AK31)/ tool post		
		unclamping output (Liuxin Tool Post)		
Y102.1		1001 post pre-indexing electromagnet signal (Yantai		
		Tri-colored lamp - vellow (normal state non-running		
Y102.2	YLAMP	non-alarm)		
Y102.3	GLAMP	Tri-colored lamp – green (running state)		
Y102.4	RLAMP	Tri-colored lamp – red (alarm state)		

PLC address	Function defined by standard PLC address		Remark
Y102.5	M10	Tailstock advancing output signal	
Y102.6	M11	Tailstock retracting output signal	
Y102.7		Reserved	
Y103.0	M37	Chip	
Y103.1	M38	Chip	
Y103.2		Reserved	
Y103.3		Reserved	
Y103.4	SORI	Spindle orientation signal	
Y103.5	SEC0	Spindle orientation selection signal 1	
Y103.6	SEC1	Spindle orientation selection signal 2	
Y103.7	SEC2	Spindle orientation selection signal 3	

Note 1: The addresses of X100.0~X105.7 are the high level input valid, that is to say, when the input signal is connected with +24V, X address signal status is 1, otherwise, the status is 0.

- Note 2: When Y address signal status output by low level is 1, the output signal is connected with 0V (0V output); when Y address signal status is 0, the output signal is high resistance.
- Note 3: When Y address signal status output by high level is 1, the output signal is connected with 24V (24V output); when Y address signal status is 0, the output signal is high resistance.

Appendix 2.2.3 Interface of the Handhold Box

DB Pin	Signal Definition	Signal Instruction	Function defined by standard PLC address
CN32.1,CN32.2	HA+,HA-	MPG phase A signal input	1
CN32.3,CN32.4	HB+,HB-	MPG phase B signal input	1
CN32.5	X37 0	PLC signal address,	External MPG box X axis
CIN32.3	A37.0	switch amount input	selection signal
CN32.6	¥37.1	PLC signal address,	External MPG box Y axis
CIN32.0	A37.1	switch amount input	selection signal
	V27 2	PLC signal address,	External MPG box Z axis
CN32.0	A37.2	switch amount input	selection signal
CN122.0	V27 2	PLC signal address,	External MPG box
CN32.9	A37.3	switch amount input	×1 gear signal
CN122.22	V27 5	PLC signal address,	External MPG box
GN32.22	A37.5	switch amount input	×10 gear signal
CN122.22	V27.6	PLC signal address,	External MPG box
GN32.23	A37.0	switch amount input	×100 gear signal
CN122.24	V27 7	PLC signal address,	External MPG box
CIN32.24	701.1	switch amount input	×X1000 gear signal
CN122.25	V20 0	PLC signal address,	External MPG box the 4 th
GN32.25	A30.0	switch amount input	axis selection signal
CN122.26	V20 1	PLC signal address	External MPG box the 5 th
CIN32.20	A30.1		axis selection signal
CN122.20	V27 4	PLC signal address	External MPG box the 6 ^{ix}
GN32.20	A37.4		axis selection signal
CN32.10,			
CN32.11	0)/	0\/	1
CN32.12,	UV	00	1
CN32.13			
CN32.14,			1
CN32.15 CN32.16	VC+	+0V	1
CN32.17,CN32.18	+24V	+24V	1

Appendix 2 Standard PLC Function Configuration

Note: When X37.0~X38..0 as high level input are valid, that is to say, when the input signal is connected with +24V, the input is valid, and X address status is 1; otherwise, X address status is 0.

Sୁr[⊷]州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Appendix 3 Interface Explanation

Appendix 3.1 CNC Rear Cover Interface Layout

etamatic

machine tools

Fig.3-1

Appendix 3.1.1 High Velocity Input Interface CN61

GSK988TA/988TA1/988TB system equips with the high velocity I/O interface CN61 of 1 input signal, its address is X0.0~X0.7

Input port CN61	CN61 pin No.	PLC add.
	1	GND
	2	X0.0
■ 3	3	X0.1
	4	X0.2
	5	X0.3
■ 7	6	X0.4
	7	X0.5
	8	X0.6
	9	X0.7

Appendix

Appendix 3 Interface Explanation

CN61	10	GND

Appendix 3.1.2 Encoder Interface CN21 and CN22

GSK988TA/988TA1/988TB owns two-circuit encoder input interface (N21, CN22), refer to the Fig. 3-2.

(9-core D-male socket)

Appendix 3.1.3 Communication Interface CN54

GSK988TA/988TA1/988TB system and machine operation panel are connected with the communication. Refer to the Fig.3-3 for the interface pin

Fig.3-3

Appendix 3.1.4 Network Interface CN55

The system uses standard general cable interfaces.

Appendix 3.1.5 Standard interface

The bus interfaces of GSK988TA/988TA1/988TB are CN51 and CN52 (GSKLinkA and GSKLinkB), the interfaces are possessed feed servo drive unit with GSKLink bus communication function, spindle drive unit and extension I/O unit communication connection.

GSKLink bus communication connection cable is shown below:

A1	TX-		A 1	TX-
A3	TX+		A3	TX+
A2	RX-		A2	RX-
A4	RX+	<u></u>	A4	RX+
	Outmost layer shielding cable			Outmost layer shielding cable

Fig.3-4 GSKLink communication connection

Appendix 3.2 Rear Cover Interface of Machine Tool Operation Panel

Fig.3-5

Appendix 3 Interface Explanation

Appendix 3.2.1 Dedicated Wave Band Switch Interface

Appendix 3.2.2 Dedicated Interface of The External Button CN66

Appendix 3.2.3 MPG Interface CN31 and CN32

MPG Interface CN31

6: VCC 5: HA- 4: HA+ 3: HB- 2: HB+ 1: GND

Fig.3-8

Hand cabinet interface CN32

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Fig.3-9 CN32 MPG interface (26-core type D pin socket)

Appendix 3.2.4 Communication Interface CN57

GSK988TA/988TA1/988TB system and machine tool operation panel are adopted the communication connection method.

Pin No.	Signal	IN/OUT	Explanation
1	RXDA	IN	Accept the data difference signal
2	RXDB	IN	Accept the data difference signal
4	TXDA	OUT	Deliver the data difference signal
5	TXDB	OUT	Deliver the data difference signal

Appendix 3 Interface Explanation

Appendix 4 Alarm Troubleshooting

Appendix 4.1 CNC Common Alarm Remedy

efamatic machine tools

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
000	Emergency stop,	 Whether the ESP button is controlled Incorrect wiring The setting of bit 7 of parameter 3003 (ESP) is inconsistent with the actual 	Modify the parameter or check the connection
	ESP open circuit	4. The setting of parameter K10.7 is inconsistent with the actual connection.	
001	Part program open failure	Program is not downloaded before the running in AUTO mode.	Reset to clear alarm and re-execute the program
002	Part prog. segment loading failure	Error found in loading segment when executing MDI prog. or checking syntax	
010	Single block exceeds 256 characters	Characters excessive in single block	
011	Data exceeds permissive range	Input data exceeds permissive range or the specified data exceeds 8 digits	
012	Address not found	With number or symbol other than address at the beginning of a block	
013	No data follows address	No data follows address or expression format following address checks error, without brackets	
014	Illegal use of negative sign	Sign "-" was input after an address with which it can't be used, or two or more "-" was input	
015	Illegal use of decimal point	Decimal point"." was input after an address with which it can't be use, or two or more "." was input	
016	Input illegal address	Input unusable address in significant area	
017	Incorrect G code	Specify improper G code or that with functions not provided	
018	Address repetition error	Specify the same address twice or more in a block Or specify two or more G codes in same group in a block. Refer to para. 3403#6 AD2.	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
019	End of record	Specify end symbol(%) of record, or not specify end of program, referring to para.3404#6 EOR	
040	Too many M codes	Count of M codes specified in a segment exceed value of para.3404#7 M3B or 3	
041	Number followed M code out of range	Digits of M code exceed the value of para.3030 MCB	
042	G code specified error with M99	G28, G30, G53, G36, G37 can't be specified with M99 in a segment	
050	Illegal tool No.	Specify a tool No. which doesn't exist, or exceeds the value of para. 3032 TCB	
051	Compensation No.	Tool offset compensation number	
	not found	exceeds range by T code (0~99)	
052	lllegal T code in block	G50(Group A) or G92(Group B)in same block. Refer to the parameter 5006#1 TGC	
060	Feedrate exceeds range	Feedrate was not specified or exceeds range:1.Check G98 or G99 state for feedrate difference of usage in Group A 2.Check G94 or G95 state for feedrate difference of usage in Group B	
062	Illegal G96 code was found	G96 was specified while const-surface-speed control function is not performed with reference to param.8130#0	
063	Axis specified error in constant surface speed control	In G96 modal, the specified axis by parameter 3770 is wrong	
070	Command can't run in MDI mode	Command cannot run in MDI mode, for example, G36/G37, G70~G73	
071	DNC time out	DNC transmission failure, please check	
075	Axes type specified error	Axis type is invalid for specifying; Check the setting of the corresponding parameters 1006#0 and 1006#1 by this axis	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
076	Illegal rotation axis for interpolation instruction	An rotation axis can't be specified except for in polar coordinates, cylinder interpolation, G00, G01 mode	
077	The specified axis is the simple controllable synchronization axis	The specified axis is set to simple synchronization controllable axis in parameter 8311.	
080	Property error for basis axes of plane	Property set error for basis axis of plane in radius interpolation	
081	Illegal rotation axes specified in circular interpolation	Modify the program or check the setting of parameters 1006#0 and 1006#1	
082	No radius and I/J/K commanded	In circular interpolation, R, I, J, K has not been specified, referring to para. 3403#5 CIR	
083	Illegal radius	In circular interpolation, Destination is not on the arc specified by R, referring to para.3403#4 RER	
084	Over tolerance of radius	In circular interpolation, difference of the distance between start point and the center of an arc and that between end point and the center of an arc exceeded setting value ,referring to para.3410 CRE	
085	Axes too much specified in circular interpolation	In circular interpolation, more than 3 axes specified	
086	Three-point arc command data error	There is no instruction in the three-point arc intermediate point instructions, or mid-point instruction can not constitute an arc.	
087	Three-point arc command data can't used to determine full arc.	Three-point arc command can not process full circle, the instruction must be specified end	
088	three-point arc command data error	 The start, end, mid point shouldn't be on the same line, or start, end point is the same The radius is 0 determined by end, mid point. 	
096	Address P or X out of range	Dwell time specified by P exceeds 0~99999999, or X exceeds -9999~9999	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
100	Chamfering amount, J was specified error in thread cutting commands	Value of J address exceeds permissive range, or the number followed J is less than zero in G92, G76	
101	Chamfering amount K was specified error in thread cutting commands	Chamfering amount specified by K is less than zero, or exceeds permissive range	
102	Value of L out of range in multi-threading	The value specified in L exceeds the range(1~99) in Multi-threading	
103	lllegal lead command	Lead specified by F is out of range	
104	Value of R out of range in variable threading	In variable threading, the lead incremental and decremental specified by R exceeded permissive range	
105	Chamfering amount too large of long axis in threading	Chamfering amount of long axis was greater than thread length; alternatively, the long axis end-retraction value calculated by leading F and parameter 5130 is excessive big in the G92/G76 command.	
106	Chamfering amount too large of latitude axis in threading	Chamfering amount of latitude axis in G92 was greater than the distance between start point and end point	
107	Axes not in selected plane in threading	Specify the axis out of the selected panel in thread command.	
108	Illegal axes for interpolation in threading	In threading, basis and parallel axes are both specified, or more than 2 parallel axes are specified	
109	C axis not exist in rigid threading	C axis is not set in parameter No.1020 for rigid threading	
110	C axis is not rotation type in rigid threading	C axis is not rotation type in rigid threading, Refer to parameter No.1006#0 and 1006#1.	
111	Spindle speed S not specified in rigid threading	S address was not specified for rigid threading command G32.1	
130	Illegal plane select	In the plane selection command, two or more axes in the same direction are selected	
131	specified for selected plane		

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
140	Metric/inch conversion command not at the beginning of the program	Metric/inch conversion command must at the beginning of the program	
141	Metric/inch conversion command not at a single block	G20/G21 metric/inch conversion can not be shared a same block with other G commands, which should be specified separately.	
142	G20/G21 metric/inch conversion can not be specified in sub-program	The metric/inch conversion is performed during calling the sub-program.	
150	Improper code in the same block with G22	The G and MSTF code can't be in the same block with G22	
151	For G22 Data exceeds permissive range	Input data exceeds permissive range,\nOr the specified data exceeds 8 digits	
152	For G22 A stroke limit check inhibited area error	The coordinate of the plus side inhibited area is not greater than that of the minus side inhibited area Or the difference is not greater than 2000 output increment, referring to No.1322 & No.1323	
153	G22 command contains an illegal axes instruction	In G22 instruction , axes other than the basic is commanded or U/V/W is used	
154	Axes specified for G22 property error	Instructions the X/Y/Z axis corresponds to the basic property is set to 0 or parallel to the axis	
160	G code in the same block with G25/G26	Specify G code of other group with G25/G26	
165	Reference point not established of axes	Reference point haven't been established before cycle start with reference to param.1005#0 ZRNx	
166	The axis does not turn to reference point while G28 was specified	The reference point does not set up before performing G28, it is better to modify the program or the parameter 1002#3 AZR.	
167	The axis does not turn to reference point while G30 or G53 was specified	The axis does not turn to reference point while G30 or G53 was specified, Please establish reference point	
168	Illegal reference	Address P specifies other values	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
	point by P address in G30	than 2~4 in G30	
169	Mid point of axis out of range for reference position return in G28/G30	In G28/G30, the position of mid-point is out of range	
180	Illegal offset value L/P for G10	1.In setting an offset amount by G10, neither L nor P is specified 2. In setting an offset amount by G10, the offset value specified by P is excessive or not specified.	
181	Command address not match in programmable parameter input function	G10/G11 is not match,G10 is specified duplicated, or G11 is specified while G10 is not specified	
182	Programmable parameter input function not canceled	Programmable parameter input function is not canceled by G11 before program ends	
183	Illegal command in Entering data from program	The NC commands, such as the axis address, G code or MSF, etc. are specified in programmed data input.	
200	P value out of range for G31	P value of G31 is beyond 1 \sim 4	
201	G31 not allowed in G99	Both basic axes and parallel axes are specified, or more than 2 parallel axes for a basic axis are specified	
202	G31 not allowed in tool radius compensation mode	In tool nose radius compensation mode, specify skip cutting command	
210	Illegal G36/G37 specified in auto tool compensation	Illegal G36/G37 specified in auto tool compensation	modify param.6240#7 IGA or modify the program
211	Offset number not found in G36/G37	Autotoolcompensation(G36\G37)wasspecified without T code	
212	T code not allowed in G36/G377	T code and auto tool compensation(G36, G37) was specified in the same block	
213	Illegal axis command in G36/G37	In auto tool compensation function(G36,G37),an invalid axis is specified	
214	Illegal axis command in G36/G37	Axis specified to move is not the corresponding axis in G36, G37 or the command is incremental	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
215	Para.error in G36/G37	γ is less than ε.Refer to param. 6251 ATOR1, 6254 ATOE1, 6252 ATOR2, 6255 ATOE2	
216	ATC not allowed in tool radius compensation mode in G36/G37	Auto tool compensation(G36, G37) was specified in tool radius compensation mode	
230	Illegal command in the same block with G7.1	In circular interpolation G7.1 (G107) block, other group of G codes or MST is specified	
231	None-rotation axis specified to start circular interpolation	None-rotation axis is specified within G7.1(G107) block	
232	Too many rotation-axes specified in circular interpolation	Too many rotation-axes is specified with G7.1(G107) in block	
233	Illegal negative sign of radius specified in circular interpolation	Illegal negative sign of radius is specified with G7.1(G107) in block	
234	Illegal G12.1, G51.2 found in circular interpolation	In circular interpolation mode, it is illegal to specified polar interpolation command G12.1,or polygon processing command G51.2	
235	Illegal change-plane command found in circular interpolation	In circular interpolation, it is illegal to specified G17~G19 to change plane	
236	Illegal change-workpiece- coordinate command in circular interpolation	In circular interpolation, it is illegal to specify G54~G59 to change workpiece coordinates	
237	Illegal multi-cycle command specified in circular interpolation	In the column interpolation method, G54~G59 can not be specified to perform the workpiece coordinate system selection	
238	Illegal tapping, drilling command specified in circular interpolation	Illegal tapping, drilling command is specified in circular interpolation by G84~G89	
239	Illegal canned-cycle command specified in circular interpolation	Illegal canned-cycle command specified in circular interpolation G90~G94	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
240	Illegal threading command specified in circular interpolation	Illegal threading command specified in circular interpolation by G32 or G34	
241	Illegal axis of other plane specified in circular interpolation	Illegal axis of other plane is specified in circular interpolation	
242	In circular interpolation mode, G code in Group 00 other than G04 is specified	In circular interpolation mode,G code in Group 00 other than G04 is can't be specified, including G27~G30,G31,G36/G37,G52,G 53	
243	Illegal G code or T code specified in circular interpolation	In circular interpolation, it is illegal to specify G00, or T code	
244	Specify radius by I/J/K in cylinder circular interpolation	Specify radius by I/J/K in cylinder circular interpolation	
245	Improper code in cylinder circular interpolation in tool compensation C type	When in G41 or G42:specify improper G-code to start or end circular interpolation	
250	Para.error for polar interpolation	When the polar coordinate interpolation command G12.1 (G112) is performed, the setting of the corresponding parameter 5460 (linear axis) or parameter 5461 (revolving axis) by polar coordinate interpolation axis is detected.	
251	C-type tool compensation error in polar interpolation	When C-type compensation is performed(None-G40-Modal),it is illegal to specify polar interpolation by G12.1/G13.1	
252	Illegal axes specified for selected plane in polar interpolation	In the polar coordinate interpolation method, the axis of the arc command is out of the selected panel.	
253	Other group of G code in the same block with G12.1/G13.1	Specify the G command of other groups in the polar coordinate interpolation command G12.1/G13.1 (G112/G113) block.	
254	Repetition of G12.1 command.	G112 already performed while command another G112	
255	Illegal T instruction found for polar interpolation	Specify T code which can't be used in polar interpolation.	
256	Illegal G code specified in polar	In polar interpolation, only G code below is proper: 1.Group	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
	interpolation	00:G04 or G65. 2.Group 01:G01, G02 or G03. 3. Group 03(G98/G99 in A-type-g code, G94/G95 in B-type-g code). 4. Group 05:G40~G43, and Group 09:G66/G67.	
270	G50 is invalid	Alarm when specify coordinate set command(G50 in A-type-G code,G92 in B-type-G code),refer to Para.1202#2	
271	Value to set the coordinate system is out of range	Refer to the valid range of G50(G92 in B-type-G code)/G52/G53/G54~G59	
272	Address P out of range for Append coordinate	Address P to select append coordinate is out of range in G54.1	
280	Address P not defined	Address P(program number) was not commanded in block including M98, G65 or G66	
281	Subprogram nesting error	The subprogram call exceeds 12 folds	
282	Program number or sequence number not found	The program number was not found specified by P in M98, M99, G65 or G66.	
283	Fail to open the program during sub-program calling	Sub-program calling; fail to open the sub-program when the internal preread sub-program occurs.	
284	Fail to init nc buffer of sub program	Fail to buffer the initial sub-program when sub-program calls.	
285	Subprogram call error	A program can't call main program or itself in M98,G65 or G66	
286	Subprogram in use	Sub program can't be called because it is in edit state or unsaved state	
287	Program call statement can't run in MDI&DNC operation	Marco program and subprogram call in MDI &DNC operation isn't supported	
		When coloct original in	
300	Illegal G code specified with multi-spindle control	multi-spindle control function, illegal G code is specified with S_P_;S_ and G25/G26, S_P_ and G96/G97 can't be specified in same block	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
301	P address error in multi-spindle selection	When select spindle in multi-spindle control function, P address assigns an illegal value beyond the range set in Para.No.3781	
302	Absence of P address in multi-spindle selection	In multi-spindle selection, P address with spindle speed command S is absence. The alarm is release when Para.No.3706#2 is set to 0	
303	Error multi-spindle function disabled	1.Para.MPP (No.3703#3) =0,while specify P address to select spindle\n2.Para.MPS(No.3781)= 0, while specify P address to select spindle	
310	Illegal polygon processing command in C-type tool compensation mode	In C-type tool compensation mode(None-G40 mode), while specify polygon processing commandG51.2(251)	
311	G51.2 repetition in polygon processing	In the G51.2 polygon machine mode, the command, G51.2, is specified again.	
312	Error found in P address of G51.2	P is not specified or set by a value out of range in G51.2	
313	Error found in Q address of G51.2	Q is not specified or set by a value out of range in G51.2	
314	PQ ratio incorrect	P/Q is not equal to 0 refer to param7603#1.	
315	G51.2 is not performed in polygon processing	When Para.No.7610 is set to 0,polygon processing command G51.2 is not used	
316	Rotation axis set error	The shaft axis of rotation is not set	
317	Conflict code specified in the same block with G51.2 or G50.2	G51.2 or G50.2 is specified in the same block with other G or MT instructions	
318	polygon processing instructions of the screw mosquito instructions	Polygon processing, command a mosquito Lo instructions	
319	polygon processing command axis command is illegal	Polygon processing, command the tool rotation axis move command	
320	polygon rotation axis machining work is no instruction S instruction position mode	Polygon rotation axis of the workpiece machining way to position mode (para. 7603 #4), there is no instruction S command.	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
321	Illegal command specified in polygon processing	In polygon processing, circular interpolation command G7.1, polar interpolation command G12.1 and tapping/drilling cycle command G84~G89 can't be used	
400	Parameter switch is ON	Press 【RESET】 to cancel alarm.	
401	Fail to open the component program	The current program is removed or there is no current program.	
402	Parameters back up failure	Check the memory or power-on again	
403	Parameters recover failure.	Check whether parameters are being written in, or power-on and retry	
405	Recovery of system Para. successfully	Please power on again	
406	Recovery of PLC Para. successfully	Please power on again	
407	Recovery of servo Para. successfully	Please power on again	
408	Recovery of units Para. successfully	Please power on again	
409	Fail to import Para.from extern file	Data in imported Para.file detected invalid, and old data was recovered	
430	More than 3 parameters fount out of range	More than 3 parameter data are exceeded the setting range, which are already used the default value.	
450	Parameter is already modified.		A parameter which requires the power off was input, turn off power
451	Servo parameter is already modified.		A servo parameter was modified which requires the system & the servo restart
452	Bus communication logic ID number is modified.		Before the device has been restarted, the internal station address will not be effective
453	I/O unit parameter is already modified.		I/O parameter which requires the power off was input, turn off power
460	Number of CNC controllable axes exceeds the total number		Check para. No.1010 and 8130

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
461	Duplicated axis attribution were set		Modify para. No. 1022
462	Duplicated axis name were set	The possible reasons: 1) The same axes names are set; 2) The forbidden axis name is specified at the current G code system.	Modify the parameter No.1020 or No.3401#6.
463	Disabled rotation axis setting	The setting of rotation axis of parameter No.1006 is disabled	
465	Duplicated servo command was set for control-axis		Modify para.No.1023
470	comm id or analog address was set for spindle		Modify para.No.3717
471	Invalid AO address of I/O unit was set for spindle		Modify para.No.3717
472	Duplicated spindle encoder number was set		Modify para.No.3723
474	Logic id was not set for spindle using Cs contour function		Modify para.No.3717 or 8133#2, 3704#6, 3704#7.
475	,Logic id was not the same between axis and spindle using Cs contour function		Modify para.No.1023, 3717, 8133#2, 3704#6, 3704#7
476	Logic id was the same between axis and spindle while Cs contour function is not used		
477	AO address of spindle beyond the maximum address of the correspond I/O unit		Modify para.No.3717.
480	Duplicated comm id of I/O unit was set for spindle		Modify para.No.3051, No.3052, No.3053, No.3054
490	None of valid comm It was set		Modify para.No.9000#0, orNo.1023,No.3717,No.3050,No.3051,No.3052,No.3053,No.3054, or No.3060
491	Custom macro config file changed, restart the system to become effective		The custom macro config file has changed, restart the system to make it effective

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
500	Reference position not established		Manually move to reference return and press "axis move" key on operation panel under "reference return" mode to establish it
501	Encode data error		It is necessary to set up the machine reference point; it may be the reason of the encoder data read error.
504	Servo battery voltage too low		Please replace the servo battery , and then reestablished the reference position
510	The alarm occurs due to the extensive error on the power-on machine coordinate	The error value between the machine tool coordinate establishement and memory with power-on exceeds the tolerance. Reason: 1) The carriager position moves during the machine tool is power-off; 2) The setting value of parameter No.1206 is excessive small.	It is necessary to reset the machine tool reference point or turn the power on again.
511	Machine coordinate initialized error too large	The error value between the machine coordinate establishment and memory with power-on is excessive big. Reason: 1) The carriager position moves during the power-off, turn on the power again. 2) The motor encoder is changed.	
512	The system parameter relevant to the reference point has been altered.	The numerical value is different when the system parameter and the machine reference point establishment are inspected with power-on, which includes parameter No.1811#2 or No.1816 or No.1820	
513	The servo parameter relevant to the reference point has been altered.	The numerical value is different when the servo and the machine reference point establishment are inspected with power-on, which contains of the command reverse parameter or gear ratio parameter.	
514	Fail to read the parameter record file relevant to the reference point	The parameter value can not be checked the previous established machine zero when the power is turned on.	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
520	PC signal detected error because of servo dislink		Please check communication connection of gsklink, and power on again
604	Servo alarm		Check the servo
650	Power supply to the servo is turned off	The coordinate system became inaccurate when the control command to the servo is interrupted	Please return to the reference position
700	stored stroke limit1 : +	Exceeded the + sides stored stroke limit 1	
701	stored stroke limit1 stored stroke limit1 : -	stored stroke limit1	
702	stored stroke limit2 : +	Exceeded the + sides stored stroke limit; 2. The internal/external inspection is determined by bit 0 of parameter No.1300.	
703	stored stroke limit2 : -	Exceeded the - sides stored stroke limit; 2. The internal/external inspection is determined by bit 0 of parameter No.1300	
704	stored stroke limit3 : +	Exceeded the + sides stored stroke limit 3	
705	stored stroke limit3 : -	Exceeded the - sides stored stroke limit 3	
706	Over travel : +	Exceeds + side overtravel limit	
707	Over travel: -	Exceeds - side overtravel limit	
710	Spindle speed alteration inspection alarm	Actual spindle speed exceeds the allowable range of commanded value	Check the machine tool cutting state, or refer to Para.No.4912 and 4913
720	Error in manual tool offset measurement	Illegal operation including: 1. A couple or more of axes shift has been detected, or no axis shift has been detected while the complete signal input; 2. Direction of axis shift and complete signal detected reversal; 3. Direction of axis shift was not fixed;	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
		 4. Another signal inputted while the last measurement was not completed; 5. At present, the manual tool-setting operation is being operated 	
721	Reference position not established for manual tool measurement	Reference position of the axis is not established	Establish the REF. position first and then re-measure
722	Data written error in manual tool measurement	Data write error in the manual tool measurement	Please check the ram
723	Error selecting tool offset number by PLC in manual tool measurement	Tool offset number selection is incorrect by PLC in the manual tool measurement	Please check the PLC
905	Append coordinate established failure	G54.1 append coordinate failed to established	Press 【RESET】 to cancle alarm, or power-on again or send it to the factory for inspecting.
910	Initial parameter failure	User parameter file does not exist or data is damaged. Default parameters become effective	
911	Initial CNC configuration failure	CNC config file does not exist or data is damaged. Default configuration becomes effective	
912	Initial tool offset data failure	Tool offset file does not exist or data is damaged. Initial data becomes effective	
913	Initial tool life data failure	Tool life file does not exist or data is damaged. Initial data becomes effective	
914	Initial pitch error compensation data failure	Pitch error compensation file does not exist or data is damaged. Initial data becomes effective	
915	Initial PLC program failure	Read file failure in registering	
930	Tool compensation initialization failure	The tool compensation file is not available or the verified error. The backup value is loaded	
931	Parameter file initialization failure	The Parameter file is not available or the verified error. The backup value of parameters is loaded	
940	Data in NVRAM changed	Data version in nvram detected inconsistent with the new version	Data version in nvram detected inconsistent with

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
		in used	the new version in used.\nFor ABS. encoder is used, please re-establish the REF. position; For INC. encoder, please return to REF. position again. Please re-execute the PLC Program and using the default data in plc to recover the data in NVRAM
941	Power off when accessing NVRAM	The system powered off as running	Perform REF. position return, and check the coordinates, tool offset values
942	Data area 1 of NVRAM detected abnormal	Verification of data area 1 of NVRAM is wrong or ruined	Perform REF. position return, and check the coordinates, tool offset values. If this alarm frequently occurs, it is better to maintain it by factory.
943	Data area 2 of NVRAM detected abnormal	Verification of data area 2 of NVRAM is wrong or ruined	If the system uses the absolute encoder, rebuild the reference point. If the system uses the incremental encoder, the zero return operation should be operated again. If the alarm frequently occurs, it is better to maintain by sending to the factory.
950	TRYOUT limit timed out. System functions are restricted.		Please contact the dealer
990	Too many alarm	The number of alarm exceeds 20	
991	Undefined alarm	Missing alarm content for alarm	
992	Format error in alarm content	Part of data in alarm content and operation info was incorrect	
993	PLC alarm information table error	The alarm num specified is not found in PLC alarm information table or out of the range 1000~2999	Modify the PLC alarm information table
	Ounteur also d	Deast access incompleted the	
4000	cancelled because	syntax check, referring to para 3401#2 NCK	Please check again

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
4001	Same sequence number found in syntax check	There are duplicated sequence number, which might cause error	Modify the program
4010	Value of some parameter out of range	This may be caused by system updating, or switching of Para.ISB\ISC, or switch of linear axis and rotation axis	
4011	GSKLink function is not used,while valid station address was set		Modify paraNo.9000#0,orNo.1023,No.3717,No.3050,No.3051,No.3052,No.3053,No.3054, or No.3060
4012	Custom macro config data absence	The custom macro displaying function is used, while the config file is not found, or no config data in it	ModifythePara.No.8132#6,orexecutetheconfigcustom macro window
4013	Custom macro config data error	The custom macro displaying function is used,while error configuration found in the config file,Please execute the correct config file	
4020	Default encoder communicates through GSKLink while none of valid communication station address has been set for the spindle		Modify para.No.3717, or set a none-zero value to para.3723
4100	Fail to set FPGA param	The FPGA Para.was not set successfully which may cause abnormal in threading or spindle control	Please power on again or contact the manufacturer
4110	Servo battery voltage low	The position will lost when power off the servo	Troubleshooting: Change the battery. Note: It is important to change the battery in the state of (that is, the servo driver is power-on) the driver alarm displays. And then turn it off, the alarm eliminates after the power is turned on. Explanation: User can continue machining after this alarm occurs, but it is essential to change the battery as soon as possible.
4120	Gateway GSK-Link-PA terminal slave has been altered.		The gateway and its corresponded communication link need to be restart.

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
4200	Machine panel devID error		Check the connection between machine panel and CNC
4201	Machine panel device information error		Check the connection between machine panel and CNC.
4202	Machine panel continuous communication error detected		Check the connection between machine panel and CNC
4205	Soft panel enabled, and machine panel stopped		Refer parameter No.8136#3(NOP) to enable machine panel
4210	MDI panel communication error	MDI panel communicated with CNC failure	
4300	System enters level 1	Never attempt to modify the parameter when the system is the level one authority.	
4304	Default password for try-out function detected	Please change the password for try-out function for security	
4305	The system will reach the try-out time limit	The system will stop soon. Please contact the salsman to get release code	
5000	Communication disconnect physically	Disconnection or interference on cable may cause the alarm	Power on again
5001	Check of ring devices overtime	Disconnection or interference on cable may cause the alarm	The system has re-tried to fix the problem.Even so, it may fail at last.Please refer to final state of communication to [RESET] the alarm, or power on again
5002	Handshake of ring B failure	Disconnection or interference on cable may cause the alarm	The system has re-tried to fix the problem.Even so,it may fail at last.Please refer to final state of communication to [RESET] the alarm, or power on again
5003	Check of time-delay failure	Disconnection or interference on cable may cause the alarm.	The system has re-tried to fix the problem.Even so,it may fail at last.Please refer to final state of communication to [RESET] the alarm, or power on again
5004	Communication configuration Para.error	Disconnection or interference on cable may cause the alarm.	The system has re-tried to fix the problem.Even so,it may fail at last.Please refer

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
			to final state of communication to [RESET] the alarm, or power on again
5005	GSKLink initial error		Please power on again
5006	Devices number detected unequal to value set in system params		Refer to PAR.No.1023, No.3717, No.3051, No.3052, No.3053, No.3054, No.3060, and comm station address of each device. Power on again.
5007	None of valid comm station address of device detected		Refer to PAR.No.1023, No.3717, No.3050, No.3051, No.3052, No.3053, No.3054, No.3060, and comm station address of each device. Power on again Power on again
5008	Communication returned to CP0 on master station		Power on again
5010	Incorrect parameter for GSKLink		Please refer to PAR.No.1023, No.3717, No.3050, No.3051, No.3052, No.3053, No.3054, No.3060, and comm station address of each device. Power on again
5011	GSKLink disconnected		Please check the connection to each device. Power on again
5020	MDT lost		Please check the device
5021	MST lost		Please check the device
5022	MDT data verified error		Please check the device
5023	GDT data verified error		Please check the device
5030	C1D device alarm		Please check the device
5031	C2D device alarm		Please check the device
5040	Communication of slave device stopped		Please check the device
5100	IDN16,24 error		Refer to corresponding system parameters, and check the work state of the device
5101	IDN32,35 error		Refer to corresponding system parameters, and

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
			check the work state of the device
5102	IDN5030,5031,503 3 error		Refer to corresponding system parameters, and check the work state of the device
5103	Fail to config I/O unit		Please check the device.
5132	C3D device alarm	This may be caused by : (1)Modify servo Para.on servo side;(2)Re-load\recover servo parameters on servo side;(3)Save servo parameters on servo side	Press [RESET] to release the alarm
5133	Please check the device. Press [RESET] to release the alarm		
5198	Initializing GSKLink	Please wait	
5199	GSKLink communication error.		
5200	Fail to load servo property		Power on again.
5201	Fail to load servo information lists		Power on again
5210	Fail to load servo parameters		Power on again
5211	Import of servo parameters	Please select the import Para.to be effective by [SELCT EFF. PAR] softkey. The parameters could not be saved before selecting.	
5220	Inconsistent of servo Para.read from servo-para-file saved in cnc and that loaded from servo		Please enter [servo param] layer and then select the effective servo Para.with [SELCT EFF. PAR] softkey.
5400	I/O unit Para.file not exist	I/O unit Para.file not exist, And the file failed to be created automatically	Press [RESET] to release the alarm
5401	Mapping table does not record the correct read configuration	It is already automatically written the current read configuration.	Press [RESET] to release the alarm
5402	The mapping table detects the incorrect address or parameter setting		The error has been corrected automatically Press [RESET] to release the alarm.

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
5403	Fail to load property	Fail to read the information from remote equipment, check whether the I/O unit is on the normal working state.	Power on again
5404	Inconsistent	The property of I/O unit loaded is different from before.Current property is recorded automatically	Press [RESET] to release the alarm.
5406	Fail to config the device	Fail to send the parameter to the remote equipment, check whether the I/O is on the normal working state.	Power on again
5500	Fail to load property of gateway		Power on again
6000	Data exceeds permissive range of extern coordinate origin offset	Data exceeds permissive range	Modify the program
6001	Data exceeds permissive range of tool offset	Data exceeds permissive range	Modify the program
6005	Data exceeds permissive range of additional workpiece coordinate origin	Data exceeds permissive range	Modify the program.
6006	Error loading Append coordinate offset	Fail to read the additional workpiece coordinate system offset value when the workpiece coordinate system is updated.	Please check the cnc flash
6007	Data exceeds permissive range of workpiece coordinate origin	Data exceeds permissive range	Modify the program.
6010	Toollife data run error	Tool Group No. exceeds the maximum allowable value,or the tool group commanded in the machine program is not set	Modify the program or modify the tool life data
6015	Auto tool compensation signal Not detected	In auto tool compensation mode(G36, G37),when enter the area assign in parameters, the measurement arrival signal is not detected (XAE\EAE)	Refer to settings or operation
6020	Over-speed of spindle in threading	In threading, the spindle speed specified is too fast for the threading axis	Modify the program
6021	Spindle speed too low in threading	S command was not specified or is set to zero, Spindle encoder feedback is abnormal	Modify the program

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
6022	Signal of 1-rotation not detected	The specified speed by spindle is lower when the thread machining is performed, which causes the feed axis abnormal.	Modify the program
6023	Increase/decrease amount of lead error in threading	Increase/decrease amount of lead is too large, which causes the feed axis abnormal	Modify the program
6024	Spindle encoder lines out of 100~5000	This type of encoder is not supported in taping	Check the parameter setting (NO.3720 and NO.3723) or change the spindle encoder
6025	Spindle rotation signal(SFR,SRV) detected error in taping	Check the output of G signal SFR, SRV or encoder connection.	Modify the program or PLC
6026	The spindle speed is excessive high or low during the common tapping, so that the tapping axis can not be performed the feed normally.	The possible reasons: 1) S command specified a value equal to zero or out of range; \n2)Encoder feedback abnormal 3) Abnormal spindle encoder feedback.	Modify the program or check the status of encoder
6027	One-revolution signal Not detected in tapping	Refer to pram NO.3723 for correct encoder setting of spindle	Check the work-state or connection of the encoder
6028	M code execution abnormal for spindle start	stop in tapping\nRefer to PLC for M code processing with spindle start/stop,CW/CCW rotation	Check whether the M code has become effective
6029	Incorrect spindle encoder selection	Incorrect spindle encoder selection, so that the thread or tapping can not be performed.	Modify the program or check the parameter NO.3723.
6030	Rigid tapping signal is off	The probable reasons: 1) Fail to detect the RGTAP signal or do not specify (By the M29 or other M codes) the rigid tapping mode before the tapping is performed; 2) Fail to correctly send the rigid tapping spindle selection signal.	Modify the program or check the ladder diagram
6031	C-axis commanded in spindle mode when execute rigid tapping	The program specified a movement along the Cs-axis when the signal CON (G27#7) is OFF.	Correct the program, or consult PLC program to find the reason the signal is not turned on
6032	Spindle selection error in rigid tapping	Refer to following possible caution: 1) Check the Plc for correct spindle selection signal assignment. 2) Refer to Para.for correct Cs contour setting	
6035	C-axis commanded in spindle mode	The program specified a movement along the Cs-axis when the signal CON (G27#7) is OFF.	Correct the program, or consult PLC program to find the reason the signal is not turned on
6036	C-axis commanded	The program specified a	Correct the program, or

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
	in spindle mode when execute G28	movement along the Cs-axis when the signal CON (G27#7) is OFF.	consult PLC program to find the reason the signal is not turned on
6037	Spindle speed arrival signal Not detected	Spindle speed arrival signal(SAR) is not detected in cutting	Modify the program or PLC
6038	Error detecting the release signal for rigid tapping (RGTAP)	RGTAP signal error in cancel rigid tap	Refer to PLC or Para.No.5200#2
6040	spindle	In polygon processing, the rotation axis for workpiece spindle is not set, or Cs contour setting is incorrect, or the rotation axis for workpiece conflicts with the axis for tool rotation.	Modify the Plc for spindle selection, or Refer to Para.No.7610
6041	synchronous instruction is illegal in polygon processing	In the polygon processing, synchronous operation, the synchronous axis movement command is issued by the NC program	please modify the program
6042	synchronous mode command is illegal in polygon processing	Polygon processing, while trying to synchronize the operation and CS contour control	please modify the program
6043	Not in position control of workpiece rotation axis in polygon processing	The workpiece rotation axis doesn't enter position control mode in polygon processing	Modify the program or Check the PLC for the reason why the signal doesn't become ON
6044	Polygon cutting spindle speed error	In the polygon processing method can not maintain the rotational speed ratio command value, since the spindle speed or faster than the polygonal shaft clamp synchronous or low	please modify the program
6045	Not in position control of tool rotation axis in polygon processing	The tool rotation axis doesn't enter position control mode in polygon processing.	Modify the program or Check the PLC for the reason why the signal doesn't become ON
6050	Illegal variable number in macro program	A value not defined as a variable number is designated in the custom macro	Modify the program
6051	Macro variables are protected	The macro variable is protected from modification	Refer to PARA. 6031 and 6032
6052	Macro variables modification is forbidden	The macro value is read-only	Modify the program
6053	Null value not allowed for system macro	Null value is not allowed to set to system macro	Modify the program
6054	Data exceeds permissive range of macro value	Data exceeds permissive range	Modify the data

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
6060	The same axis was commanded by PLC and CNC	Axis control command was given by PLC to an axis controlled by CNC	Modify the program or check the PLC.
6061	Cannot change PLC control mode	Select an axis which is in commanding by PLC control	Modify the PLC program
6070	Encoder data error because of PC signal Not detected	The servo is not applied, or Gsklink communication failed, or the spindle failed to rotate to the precise position for correct encoder data	Check the Gskling communication state or the work state of spindle
6075	Error return to reference point of slant-controlled axis	In the state of the manual reference point return in the slopping axis control and no reference point return operation after power-on for the automatic reference point return, try to perform reference point return operation of the perpendicular axis in the state of the slopping axis reference point return does not execute.	Perform the reference point return operation of the perpendicular axis after its operation along the slopping axis is completed.
6080	Illegal G code specified in handwheel retraction block	Illegal G code specified in handwheel retraction block was found	Modify the program
6200	Canned cycle cmd in non ZX plane	Canned cycle can't command in non ZX plane	Modify the program
6201	Specify other axes not included in ZX plane	Specify other axes not included in ZX plane	Modify the program
6202	In G90/G77,G92/G78 commands, absolute value of R is greater than that of address U(radius assigned)	In block using G90/G92 command (G code Group B:G77/G78) ,When sign of address R and U is opposite, absolute value of R is greater than that of U(Radius assigned)	Modify the program
6203	In G94/G79 commands, absolute value of R is greater than that of W.	In blocks using G94 (G code Group B:G79), When the sign of address R and W is opposite, the absolute value of R is greater than that of W	Modify the program
6210	Illegal plane select in multiple repetitive cycle	When specifying the multi-cycle G70~G76, its plane does not XZ (modal regards as G18), or specify the plane shifting commands G17~G18 in G70~G76 blocks.	Modify the program
6211	Specify other axes not included in ZX plane in G70~G76	Specify other axes not included in ZX plane in G70~G76	Modify the program.
6212	Illegal G code in G70~G73	In the G70~G73, unused G code is specified between two blocks based upon the addresses P and	Modify the program

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
		Q; the G0~G3, G96/G97, G98/G99, G40~G42can only be specified in the blocks of NS~NF.	
6213	G70~G73 cannot operate in MDI mode	G70~G73 with P & Q was specified in MDI mode	Modify the program
6214	Illegal macro statement in G70~G73	Macro statement is unallowable in G70~G73 command	Modify the program
6215	Call the sub-program in the G70~G73 cycle	Fail to call the sub-program in the G70~G73 cycle	Modify the program
6216	Illegal subprogram call in G70~G73	Subproram call is unallowable in G70~G73 command	Modify the program
6217	Incorrect address P command in G70~G73	Fail to specify the P or the command exceeds its range in the G70~G73.	Modify the program
6218	Incorrect address Q command in G70~G73	Fail to specify the Q or the command exceeds its range in the G70~G73.	Modify the program
6219	Fail to search the address P or Q in the G70~G73	The sequence number specified by P & Q was not found in G70,G71,G72 or G73	Modify the program
6220	The commands between P and Q are same in the G70~G73	The number specified by address P & Q the same in G70~G73	Modify the program
6221	The two blocks as components of G71~G73 command are discontinuous	The two blocks as components of G71~G73 command are discontinuous, which is possible to cause error	Modify the program
6222	Blocks between Ns & Nf exceeds 100 in G70~G73	Too many blocks of the Ns—Nf in G70~G73, it exceeds the Max. allowable 100 blocks.	Modify the program
6223	Cutting direction determined by Ns-Nf blocks is the same with track direction in G71~G73	Direction of cutting conflicts with track direction, so that the track will not close	Modify the program
6224	Direction of cutting(in Ns-Nf blocks) and finishing allowance is the same in G71~G73	Direction of cutting(in Ns-Nf blocks) and finishing allowance is the same in G71~G73	Modify the program
6225	Shape specified in Ns-Nf blocks Not monotonous in	Arc specified in Ns-Nf blocks of G70~G73 is long arc	Modify the program

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
	G71~G73		
6226	Arc shape specified in Ns-Nf blocks Not monotonous in direction of X axis in G71~G72	Arc shape specified in Ns-Nf blocks is not monotonous in direction of X axis in G71type-I or G72	Modify the program
6227	Arc shape specified in Ns-Nf blocks Not monotonous in direction of Z axis in G71~G72	Arc shape specified in Ns-Nf blocks is not monotonous in direction of Z axis in G71type-I or G72	Modify the program
6228	Arc shape specified in Ns-Nf blocks Not monotonous in direction of X axis in G71 type-II	Arc shape specified in Ns-Nf blocks is not monotonous in direction of X axis in G71 type-II	Modify the program
6229	Arc shape specified in Ns-Nf blocks Not monotonous in direction of X axis in G73	Arc shape specified in Ns-Nf blocks is not monotonous in direction of X axis in G73	Modify the program
6230	Arc shape with finishing allowance specified in Ns-Nf blocks Not monotonous in direction of Z axis in G73	Arc shape with finishing allowance specified in Ns-Nf blocks is not monotonous in direction of Z axis in G73	Modify the program
6231	Arc shape with retraction amount specified in Ns-Nf blocks Not monotonous in direction of Z axis in G73	Arc shape with retraction amount specified in Ns-Nf blocks is not monotonous in direction of Z axis in G73	Modify the program
6233	X axis of start point was on cutting path in G71/G72	Start point was on cutting path in G71/G72, which may cause interfere of tool and workpiece, referring to para. 5104#2 FCK	Modify the program
6234	Z axis of start point was on cutting path in G71/G72	Start point was on cutting path in G71/G72, which may cause interfere of tool and workpiece, referring to para. 5104#2 FCK	Modify the program
6235	X axis of start point was on cutting path in G73	Start point was on cutting path in G73, which may cause interfere of tool and workpiece, referring to para. 5104#2 FCK	Modify the program.
6236	Z axis of start point was on cutting path in G73	Start point was on cutting path in G73, which may cause interfere of tool and workpiece, referring to para. 5104#2 FCK	Modify the program
6237	Too many concaves in G71 type II	More than 10 concaves are specified in G71 type II	Modify the program

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting		
6238	Direction of chamfering and finishing allowance along X axis is inconsistent in G73	Direction of chamfering and finishing allowance along X axis is inconsistent in G73	Modify the program		
6239	Direction of chamfering and finishing allowance along Z axis is inconsistent in G73	Direction of chamfering and finishing allowance along Z axis is inconsistent in G73	Modify the program		
6240	Too many cutting blocks per cycle in G71 II cycle	Too many cutting blocks per cycle are specified in G71 II cycle	Modify the program		
6241	Finishing allowance U of X axis in G70~G73 beyond proper range	Finishing allowance U of X axis in G70~G73 is beyond proper range	Modify the program		
6242	Finishing allowance W of Z axis in G70~G73 beyond proper range	Finishing allowance W of Z axis in G70~G73 is beyond proper range	Modify the program		
6243	G00 or G01 move command not found in first block of G71~G72	G00 or G01 move command should include in first block of G71~G72	Modify the program		
6244	G00-G03 move command not found in first block of G73	G00-G03 move command not found in first block of G73	Modify the program		
6245	Over tolerance of radius in G71~G73	The radius D-value calculated by arc command in G71~G73 exceeds its range.	Modify the program		
6246	X axis motion in the first block of G71	X axis increment was not commanded in first block of G71, or X axis increment is zero	Modify the program		
6247	Z axis motion in the first block of G72	Z axis increment was not commanded in first block of G72, or Z axis increment is zero	Modify the program.		
6248	Depth of cutting is less than zero or more than maximum in G71 or G72	Single tool infeed value is less than or equals to 0 in G71 or G72 command, alternatively, it is more than the top tool in-feed value.	Modify the program		
6249	Escaping amount(R(e)) is less than zero in G71 or G72	Escaping amount(R(e)) is less than zero in G71 or G72	Modify the program		
6250	Increment cutting amount out of range in G73	Increment cutting amount out of range in G73	Modify the program		
6251	The number of division R(d) in G73 out of range	The rounding number of division is less than 1 or more than 999	Modify the program		
6252	Direction of cutting and finishing	Cutting direction determined by position point and NS block Modify the program			

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
	allowance is the same	conflicts with the finishing allowance direction	
6253	Para. modified failure in G71~G76	Para. modified failure in G71~G76. Check that the para. file be abnormal	Modify the program
6254	Part prog. segment loading failure in G71~G76	Fail to read the program in NS~NF from G70~G76 during operation	Modify the program
6260	Value of address Q beyond the proper range in G74G75	Value of address Q is beyond the proper range in G74G75	Modify the program
6261	Value of address P beyond the proper range in G74G75	Value of address P is beyond the proper range in G74G75	Modify the program.
6262	Value of address R(e) is beyond the proper range in G74 or G75	Retraction amount specified by address R(e) in G74 or G75 is less than zero, or greater than maximum.	Modify the program.
6263	Value of address $R(\triangle d)$ is beyond the proper range in G74 or G75	Retraction at the cutting end specified by $R(\triangle d)$ in G74 or G75 is less than zero, or greater than maximum	Modify the program
6270	X or Z axis increment is 0 in G76	X or Z axis increment is 0 in G76	Modify the program
6271	Repetitive count in finishing is less than 1 or greater than 99 in G76	Repetitive count in finishing is less than 1 or greater than 99 in G76	Modify the program
6272	G76 thread chamfering width P(r) exceeds the permit range.	G76 thread chamfering width P(r) exceeds the permit range.	Modify the program
6273	Angle of tool tip out of range in G76	Angle of tool tip out of range in G76	Modify the program
6274	Q(∆dmin) out of range in G76	Minimum cutting depth Q $(\triangle dmin)$ out of range in G76.	Modify the program
6275	Finishing allowance R(d) out of range in G76	Finishing allowance R(d) is less than least increment in G76	Modify the program
6276	G76 thread taper R(i) beyond the proper range	G76 thread taper value specified by address R(i) exceeds the proper range	Modify the program
6277	R and U is inconsistent for taper thread cutting in G76	Machining start position is between thread beginning point and end point in G76	Modify the program.
6278	Thread height not specified by P in G76	Thread height not specified by P in G76	Modify the program.
6279	Incorrect thread height in G76	Thread height is less than Finishing allowance in G76 Modify the program	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting	
6280	Thread height is less than Finishing allowance or minimum cutting depth in G76	Thread height is less than Finishing allowance or minimum cutting depth in G76		
6281	Thread height is larger than the destination to end point in G76	The tooth specified by G76 is more than the distance between the positioning point and thread end.	Modify the program	
6282	Number followed address Q is out of range in G76	depth of cut in 1st cut Q was out of range, or not specified	Modify the program	
6283	Taper of thread is bigger than 45 in G76	Taper of thread is bigger than 45 in G76	Modify the program	
6284	Taper is parallel to the tool in G76	The thread taper specified by G76 is parallel with the cutter, and it can not be performed the cutting.	Modify the program	
6285	Incorrect thread taper or pointed angle specified by G76	G76 can not be specified the correct pointed angle or thread taper, so that the normal cutting can not be performed.	Modify the program	
6300	Illegal S code command in rigid tapping	In rigid tapping, an S value is out of range or not specified	Modify the program	
6301	S code not found in rigid tapping by G84 or G88	In G84 or G88 rigid tapping(parameter 5200#0 is set to 1),an S value is not specified	Modify the program	
6302	Beyond the range of address J for spindle extraction in rigid tapping	Value of address J exceeds the range for spindle extraction in rigid tapping	Modify the program	
6303	Illegal K in tapping	The specified repeated times K value in the tapping or drilling canned cycle does not within the 1~99.	Modify the program	
6304	Lead specified in address F beyond the range in tapping	Lead or speed specified in address F beyond the range in tapping	Modify the program	
6305	Inch Lead value specified in address I beyond the range in tapping	Inch Lead value specified in address I is beyond the range in tapping		
6306	Incorrect program command in the rigid tapping	n le and S value based upon the rigid tapping mode does not share with a same block.		
6307	Illegal axes-motion command in rigid tapping mode	n In rigid tapping, a motion block is d specified between M code(start rigid tapping) and G84 command		
6308	Invalid axis in rigid tapping or drill cycle command	An invalid axis is specified in Refer to Para.10 G83~G89 command axis-property sett		

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting	
			modify the program.	
6309	Tapping axis or drilling axis changed in tapping	Command G84/G88 when tapping, or switch G83/G87, G85/G89 command in drilling cycle. For example: Specify G87 when in G83 state, or specify G88 when in G84 state, or specify G89 when in G85 state	Modify the program.	
6310	Plane changes while tapping	The plane shifting commands G17~G19 are specified in rigid tapping mode.	Modify the program	
6311	Tapping distance too short in rigid tapping	In rigid tapping command G84/G88, tapping distance (distance from R plane to bottom of hole) is less than lead	Modify the program	
6312	Cutting depth less than retraction depth in deep-hole tapping	In peck tapping command(Q is not set to 0),Value of Q is less than retraction depth setting in Para.No.5213	Modify the program of param	
6313	Unusable data specified in tapping	Specify other M code or S code between rigid tapping M code block and G84 block	Modify the program	
6314	Illegal M code specified in rigid tapping or drilling cycle	The M code without sharing a same block is specified in the G83~G89 blocks or in its modal. The M code can be shared with a same block: 1. G83/G87 and G85/G89 are the C axis clamping M code (parameter 5110 setting value). 2. The M codes of G84/G88 can be shared with a same block: Specify the rigid tapping mode M code (Parameter 5210 setting value; the M code is M29 if the parameter is set to 0); C axis clamping M code (Parameter 5110 setting value).	Modify the program	
6315	M code to clamp C axis error in drilling cycle	M code to clamp C axis error, referring to Para.No.#5110, and M30 can't be used	Modify the program	
6316	G84/G88 tapping specified in G96 mode	G84/G88 tapping can't be specified in G96 mode	Modify the program	
6317	Illegal address specified in rigid tapping or drilling cycle	In G83~G89 mode, G7.1/G107, G12.1/G112, G13.1/G113 is specified, alternatively, the polygon machines the G51.2 command	Modify the program	
6318	Illegal T code specified in rigid tapping or drilling cycle	de gid Illegal T code is specified in ng G83~G89 Modify the prog		
6330	Improper command	A function which can't be used in	Modify the program	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
	in custom macro program	custom macro program is commanded	
6331	Brackets not match in custom macro program	The '['AND']' does not match in the user macro program	Modify the program
6332	Condition command error in custom macro program	Condition command doesn't exist in custom macro program.	Modify the program
6333	Format error in macro program	There is an error in other format than <formula></formula>	Modify the program
6334	Illegal variable number in macro program	A value not defined as a variable number is designated in the custom macro	Modify the program
6335	Unallowable macro program call	A program in G66 modal specified M98, G65 or G66	Modify the program
6336	The nesting of bracket exceeds the upper limit	The nesting of bracket exceeds the upper limit(5 quintuple)	Modify the program
6337	Illegal argument	The SQRT argument is negative, the arguments BCD and BIN are negative or BIN argument value can not be shifted into the correct BCD code.	Modify the program
6338	Divided by zero	Divisor was 0(including tan90°)	Modify the program
6339	Quadruple macro modal call	A total of four macro call and macro modal calls are nested	Modify the program
6340	Macro control command can't be used in DNC and MDI program	Macro control command was specified in DNC and MDI mode	Modify the program
6341	Missing end statement	DO-END does not correspond to 1: 1.\nOr has other illegal cmd exists in END block, incorrect format	Modify the program
6342	assignment operation of custom macro not allowed	User's authority is too low to execute assignment operation of custom macro	Modify the program
6343	Illegal loop number	in DOn, 1≤n≤3 is not established	Modify the program
6344	NC and macro statement in same block	NC and custom macro coexist	Modify the program
6345	Illegal macro sequence number	The sequence number specified in the branch statement was not 1~99999, or, it can't be searched	Modify the program
6346	Illegal argument address	An unallowable argument address was used which is not in <argument designation=""></argument>	Modify the program
6347	Tool radius direction data error	The custom macro data used for tool radius direction input should be in the range of 0~9 after rounded	Modify the program

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting	
6348	Illegal argument	The argument is incorrect, or the argument is illegal	Modify the program	
6349	Operand of logical operation statement error	Operand of logical operation statement OR, XOR, AND are negative.	Modify the program	
6350	G67 custom macro cancel	G67 was commanded while corresponding G66 command was not found. Please check the program whether G66 should be added, and referring to para 6000#1 G67.	Modify the program	
6351	Macro variables are protected	The macro variable is protected from modification	Modify the program	
6352	Macro variables modification is forbidden	The macro value is read-only	Modify the program	
6353	Overflow of float data	Float data exceeds the allowed range in macro calculating(±1E47 when ARA.6008#0 is set to 1, or else is ±1E308)	Please modify the program or PARA. 6008#0	
6354	Macro prog. shouldn't be called by M code	Macro prog. shouldn't be called by M code	Modify the program	
6355	Null value not allowed for system macro	Null value is not allowed to set to system macro	Modify the program	
6356	Not proper T code to call custom macro program	Not proper T code to call custom macro program	Modify the program, or refer to Para.No.6008#5, 6060~6069	
6357	Illegal G code in same block with G66/G67	G66/G67 doesn't work with G code of other group in same block.	Modify the program	
6370	No solution at NRC	A point of intersection can't be determined for tool nose radius compensation.	Modify the program	
6371	Not allowed to start & cancel NRC in arc command	Start or cancel tool nose radius compensation in circular interpolation	Modify the program	
6372	Can't change plane in NRC	The offset plane is switched in tool nose radius compensation	Modify the program	
6373	Interference in circular block	The arc start point or end point coincides with arc center, or destination point is not on arc.	Modify the program	
6374	Interference in G90 or G94 block	Overcut will occur in tool nose radius compensation in canned cycle G90 and G94	Modify the program	
6375	Interference in arc concluded from checking	Overcut is possible to occur in tool nose radius compensation	Modify the program	
6376	Inconsistent of direction of tool path in NRC and on drawing	f Inconsistent of direction of tool path in NRC and on drawing(if exceeds range between 90 and 270 degree)possibly result in part		

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
		overcut	
6377	G41 or G42 not allowed in MDI mode	G41 or G42 was specified in MDI mode(tool nose radius compensation),referring to para 5008#4 MCR	Modify the program
6378	Inner whole circle cutting overcut	In inner whole circle cutting, overcut possibly occur, referring to para 5008#5 CNF	Modify the program
6379	undercut in machining step being less than tool radius	undercut in machining step being less than tool radius, search 5008#6 CNS	Modify the program
6380	Radius of arc is less than that of tool in inner surface arc cutting	Radius of arc is less than that of tool in inner surface arc cutting, which might cause overcut	Modify the program
6381	ArccmdexistswhencanceltemporarilyorcreateNRC	While NRC is canceled temporarily as a result of a non-NRC G code, an arc command was specified	Modify the program
6382	Over tolerance of radius in tool compensation calculation	In the cutter compensation, the radius D-value calculated from arc command exceeds its range.	Modify the program
6383	NRC detected error	Detect error in tool nose radius compensation. This is due to program or operator	Modify the program
6384	Tool offset not executed before polar coordinate interpolation	The tool offset is not executed of the linear axis in Polar coordinate interpolation	Modify the program
6385	Error found when cancelling cylindrical interpolation	Cylindrical interpolation can't be cancelled in C tool compensation mode	Modify the program
6386	Property error for axes of plane of C tool compensation	Property set error for two axis of plane of C tool compensation	Modify the program
6400	HF/CNR function or CHF/CNR measurement-progr am-inputting function disabled	If block contains address', R'or',C', refer Para.No.8134#2 for setting to 0 2. Please refer to parameter No.3453 and parameter No.8134	Modify the program
6401	CHF/CNR measurement-progr am-inputting function Only used in automatic mode.	CHF\CNR measurement-programming function do not work in MDI or DNC mode	Modify the program
6402	Code than G01G02/G03 after CHF/CNR	n Improper movement other than r G01G02/G03 is specified next to Modify the program chamfer/corner R block	

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting
6403	Code is not G01G02/G03 after CHF/CNR	Theblocknexttothechamfer/cornerRisnotG01G02/G03	Modify the program
6404	lllegal axis after CHF/CNR	An axis not selected in the plane is specified in the block next to the chamfer/corner R	Modify the program
6405	Program end block after CHF/CNR\nIn auto-meme	DNC mode ,the next block is program end block after CHF/CNR R specified; Or in MDI mode, the block containing CHF/CNR R is the last block	Modify the program
6406	CHF/CNR R address specified in the NF block of G71~G76	CHF/CNR R address was specified in the NF block of G71~G76	Modify the program
6407	Plane selection not allowed after CHF/CNR It's not allowed to specified a command to select axis plane in the block next to the chamfer/corner R		Modify the program
6408	Improper movement after CHF/CNR\nA move distance less than the value of chamfering , chamfering point is not on the tool track	The movement value along axis in the specified block of chamfering or corner R is smaller than the chamfering value or corner R value, alternatively, the chamfering point calculated does not at the path.	Modify the program
6409	Data error in CHF/CNR	Invalid data of chamfer/corner R is specified	Please modify the program
6410	Multiple G04 dwellsIn the block, after specifying th block of the chamfering or corner the chamfering or corner RR, two or more G04 dwe corner R		Please modify the program
6411	None-motion block after CHF/CNR	Blank block or M/S/T/F block without motion command after CHF/CNR.	Please modify the program
6412	End position or angel not specified in CHF/CNR measurement-progr am-inputting function	For blocks after Address (Aa), coordination or angle value should be specified	Please modify the program
6413	End position calculates error	In the drawing dimension direct input, the specified angle is less than 1 degree. The E-O-B can not be correctly calculated.	Please modify the program
6414	Address ',A' specified in the last block in direct drawing dimension programming	In direct drawing dimension programming Address, ',A' specified in the last block, so that the destination of the block can't be auto calculated	Please modify the program

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting	
6415	Address ',A' specified in NF block of G71~G76 command in direct drawing dimension programming	In direct drawing dimension programming, Address ',A' specified in NF block of G71~G76 command, , so that the destination of the block can't be automatically calculated		
6416	Fail to calculate destination point	In direct drawing dimension programming, Fail to calculate destination point	Modify the program	
6417	Illegal G code specified in direct drawing dimension programming	Illegal G codes are as follows:\nG code of Group 00 (G04 excluded). G code of Group 01(G00,G01,G32 excluded).\nG code of Group 07 (G22/G23 excluded), G code of Group 11(G17~G19 excluded).Group 08(G83~G89 excluded)	Modify the program	
6418	Fail to employ direct drawing dimension programming for G code modal state	G code modal state doesn't not work with direct drawing dimension programming, included G codes are as follows: G7.1 circular interpolation, Group 01 (G00, G01, G32 excluded), Group 08 G83~G89	Modify the program	
6419	Illegal address in CHF/CNR measurement-progr am-inputting function	This may be caused by: More than 2 continuous blocks without motion command specified	Modify the program	
6430	Illegal tool group number	Tool life group number is less than 1; alternatively, it exceeds the Max. allowable value set by parameter 6813; when parameter 6813 sets to 0, up to 128 groups can be performed.	Modify the program	
6431	Tool group number not found	Tool group number commanded in machining program is not set.	Modify the program or parameter	
6432	T code not found	In tool life registeration , a T code was not specified where is should be	Modify the program	
6433	Illegal tool life data	The tool life to be set is too excessive or not set. When count with time, refer to Para.No.6805#1 for time unit.	Modify the program	
6434	Tool life management command not matched	fe T[][]99 not specified or specified error when using T[][]88\nModify the programModify the setting		
6440	Block sequence NO. not found	In program restart operation, the sequence NO. is not found	Modify the setting value	
6441	Illegal assign of G71~G73 cycle blocks for program restart operation	In restart operation, the block assigned block is included in NS~NF blocks of G71~G73	Please assign alter start block.	

Alarm No.	Meaning	Possible Alarm Reason	Troubleshooting	
6442	Illegal G code in start block of program restart operation	Illegal G code is specified in start block of program restart operation	Please assign alter start block	
6443	Unallowed restart from threading or rigid tapping block	The restart block contains threading commands(G32, G33, G34), thread cycle(Group A:G92, Group B:G78), thread canned cycle(G76), and raid tapping cycle(G84/G88)	Please assign alter start block	
6444	System variables operation found in program restart search	In program restart search, operation on system variables is not allowed	Please assign again	
6445	,Illegal command specified in MDI mode after program restart search	Only M, S, T commands will execute in MDI mode after program restart search	Modify the program	
6446	G28/G30 command found in program restart search	G28/G30 command found in program restart search, while command the start of program and has not returned to the ref. point	Modify the program	

Appendix 5 Installation Layout

Appendix 5.1 Installation Dimension of GSK988TA/988TA1/988TB and its Accessory

GSK988TA/988TA1/988TB divide into GSK988TA1 (Vertical), GSK988TA1-H (Horizontal), GSK988TA (Vertical), GSK988TA-H (Horizontal), GSK988TB (10.4 inch vertical) and GSK988TB-H (10.4 inch horizontal), and its configured operation panels are also different, refer to the following table for the detailed types.

	14510 6	•	
Production type	Panel name	Structure	Name
GSK988TA1	Machino	With MPG	MPU-08E
(vertical_type)		Without	MPU-09E
		MPG	
	Machino	With MPG	MPU-10E
(borizontal type)		Without	MPU-11E
(nonzoniai-type)		MPG	
GSK088TA	Machino	With MPG	MPU-08
		Without	MPU-09
(vertical-type)		MPG	
	Machina	With MPG	MPU-10
(borizontal type)		Without	MPU-11
(nonzontai-type)		MPG	
	Editing keyboard		EDU-01
GSK988TB	Machine		MPU-20
(10.4 inch screen	operational panel		
vertical-type)	Machine	With MPG	AP04
	operational panel	Without	AP05
		MPG	
	Editing keyboard		EDU-02
GSK988TB-H	Machine		MPU-20
(10.4 inch screen	operational panel		
horizontal-type)	Machine	With MPG	AP06
	operational panel	Without	AP07
		MPG	

Table 5-1

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 5 Installation Layout

Appendix 5.1.1 GSK988TA1 and its Accessory

Fig. 5-1 GSK988TA1 appearance installation dimension

Appendix 5.1.1.2 Outline Installation Dimension of GSK988TA1 Operation Panel MPU-08E

Fig. 5-2 The installation dimension of machine operation panel MPU-08E

Note: The installation dimension of the operation panel MPU-09E is identical with the one of the MPU-08E, which is the different between them is with or without MPG.

Appendix 5 Installation Layout

Appendix 5.1.2 GSK988TA1-H & Accessory

Appendix 5.1.2.1 GSK988TA1-H Host Appearance Installation Dimension

Fig.5-3

Appendix 5.1.2.2 MPU-10E Appearance Installation Dimension of GSK988TA1-H Operation Panel

Note: The installation dimension of the operation panel MPU-10E is identical with the one of the MPU-11E,

<u>像</u>г≌州数控

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

which is the different between them is with or without MPG.

Appendix 5.1.3 GSK988TA and its Accessory

Appendix 5.1.3.1 GSK988TA Host Figure Installation Dimension

Appendix

Appendix 5 Installation Layout

Appendix 5.1.3.2 Appearance Installation Dimension of GSK988TA Operation Panel MPU-08

Note: The installation dimension of the operation panel MPU-09 is identical with the one of the MPU-08, which is the different between them is with or without MPG.

Appendix 5.1.4 GSK988TA-H & Accessory

Appendix 5.1.4.1 GSK988TA-H Host Appearance Installation Dimension

Appendix 5.1.4.2 MPU-10 Appearance Installation Dimension of GSK988TA-H Operation Panel

Fig.5-8

Appendix 5 Installation Layout

Note: The installation dimension of the operation panel MPU-10 is identical with the one of the MPU-11, which is the different between them is with or without MPG.

Appendix 5.1.5 GSK988TB and its Accessory

Appendix 5.1.5.2 GSK988TB-H Host Outline Installation Dimension

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

Appendix 5 Installation Layout

Appendix 5.1.6 I/O Unit Appearance Dimension

Appendix 5.1.6.1 IOL-01T Appearance Dimension

Official GSK Agents in South Africa Tel: +27 11 626 2720, design@efamatic.com

<u>@</u>,Г[⊷]州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Appendix 5.1.6.3 IOL-02F Appearance Dimension

Appendix 5 Installation Layout

<u>惫</u>г⁻州数控

GSK988TA/GSK988TA1/GSK988TB Turning Center CNC System User Manual [Programming & Operation]

Appendix 6 List of Normal Operation

Classifi cation	Function	Operation				Mode	Display page	Password level	Pro gram switch	Para meter switch	Note
Zero clear	X axis relative coordinate zero clear	SET REL, numerical valu			al value 0,		Position				
	Z axis relative coordinate zero clear	SET REL , , numeri value 0,			numerical		Position				
	Number of the machining work pieces zero clear	CLEAR PART CNT					Position				
	X axis tool offset value zero clear		CLEAR				Setting tool offset	Level 2, 3 and 4			
	Z axis tool offset value zero clear		CL	EAR			Setting tool offset	Level 2, 3 and 4			
Setting the data	Word axis type parameter	INPUT	parame	ter value	INPUT	MDI mode	Parame ter	Level 2 and 3		ON	
	Bit axis type parameter	INPUT	parame	ter value.	INPUT	MDI mode	Parame ter	Level 2 and 3		ON	
	Macro variable	MEASURE , X axi OK value,		, X axis n OK	neasured		Tool offset	Level 2 and 3			
	X axis tool offset input	MEASURE , X axis OK value.		measured		Tool offset	Level 2, 3 and 4				
	Z axis tool offset input	MEAS	SURE	, Z axis n OK	neasured		Tool offset	Level 2, 3 and 4			

Classifi cation	Function	Operation	Mode	Display page	Password level	Pro gram switch	Para meter switch	Note
	Tool wearing value input	+ INPUT , wearing value, OK		Tool offset	Level 2, 3 and 4			
Search	Search from the program line	LOCATE , line number	,	Program content	Level 2, 3 and 4			
	Search from the initial line to the bottom	SEARCH , character,	-Edit mode		Level 2, 3 and 4			
	Search from the current program to the top	SEARCH , character,			Level 2, 3 and 4			
	Search from the current program to the top	SEARCH , character,			Level 2, 3 and 4			
	Search for the specified program	SEARCH , program name, OK	Edit mode and Auto mode	Program content	Level 2, 3 and 4			
	Search for the system parameter, servo parameter or the pitch error compensa tion parameters	SEARCH , Parameter number, OK		System page				
Delete	Delete the characters behind the cursor	DELETE	Edit mode	Program content	Level 2 and 3	ON		
	Delete the characters before the cursor	BACK SPACE	Edit mode	Program content	Level 2 and 3	ON		
	Delete single block	DEL BLK	Edit mode	Program content	Level 2 and 3	ON		
	Delete many blocks	DELETE Select many block.	Edit mode	Program content	Level 2 and 3	ON		

Appendix 6 List Of Normal Operation

Appendix

<u>惫</u>г[⊶]州数控

Classifi cation	Function		Opera	ation		Mode	Display page	Password level	Pro gram switch	Para meter switch	Note
	Delete the single block	Select th	ne block	to be	e deleted,	Edit mode	Program directory	Level 2 and 3	ON		
	Cursor moved to the file ahead	CHANGE	企			Edit mode	Program content	Level 2 and 3	Cursor moved to the file ahead		
	Cursor moved to the file end		CHANGE	↓ Ţ		Edit mode	Program content	Level 2 and 3	Cursor moved to the file end		
	Cursor moved to the line ahead		CHANGE			Edit mode	Program content	Level 2 and 3	Cursor moved to the line ahead		
Normal	Cursor moved to the line end		CHANGE			Edit mode	Program content	Level 2 and 3	Cursor moved to the line end		
shortcu t key	Select the arbitrary block	SHIFT	<u></u> ָ ָ ָ ָ ָ ר	> \f	, ⊄	Edit mode	Program content	Level 2 and 3	Select the arbitrary block		
	Copy the arbitrary block		CHANGE			Edit mode	Program content	Level 2 and 3	Copy the arbitrary block		
	Cut the arbitrary block		CHANGE	C×		Edit mode	Program content	Level 2 and 3	Cut the arbitrary block		
	Paste the arbitrary block		CHANGE	^Q N		Edit mode	Program content	Level 2 and 3	Paste the arbitrary block		
Create	Create a new program	N	IEW Oł	, prograi	m name,	Edit mode and Auto mode	Program content	Level 2 and 3	ON		
Renam e	Rename a program	REI	NAME OF	prograr	n name,	Edit mode	Program directory	Level 2 and 3	ON		
Save as	Save the program as	SAV	/E AS , Oł	prograr	n name,	Edit mode	Program directory	Level 2 and 3	ON		
Execu te	Execute the program	Select the	program,	L	.OAD	Edit mode and Auto mode	Program directory	Level 2 and 3	ON		

Classifi cation	Function	Ope	Mode	Display page	Password level	Pro gram switch	Para meter switch	Note	
Setting the switch	ON and OFF of the program switch	ON: OFF:	$ \begin{array}{c} \bigtriangledown \\ \bigtriangledown \\ \end{array} \end{array} $	MDI mode	CNC setting	Level 2 and 3			
	ON and OFF of the parameter switch	ON: OFF:	①	MDI mode	CNC setting	Level 2 and 3			
	ON and OFF of the automatic sequence number	ON: OFF:	↓	MDI mode	CNC setting	Level 2 and 3			
	Input unit	Metric syst	Metric system:			Level 2 and 3			

Appendix 6 List Of Normal Operation

Note 1: "," in the "operation" column means the operation of two keys should be executed in order, "+" means the two keys should be pressed meanwhile.

Note 2: The blank in the row of the operation mode, the display page, the password level, the program switch or the parameter switch means the corresponding function is irrelative with the ite.